Sparsity Based Framework for Spatial Sound Reproduction in Spherical Harmonic Domain

Gyanajyoti Routray, R. Hegde
{"title":"Sparsity Based Framework for Spatial Sound Reproduction in Spherical Harmonic Domain","authors":"Gyanajyoti Routray, R. Hegde","doi":"10.23919/EUSIPCO.2018.8553209","DOIUrl":null,"url":null,"abstract":"In this paper, a novel sparsity based framework is proposed for accurate spatial sound field reproduction in spherical harmonic domain. The proposed framework can effectively reduce the number of loudspeakers required to reproduce the desired sound field using higher order ambisonics (HOA) over a fixed listening area. Although H OA provides accurate reproduction of spatial sound, it has a disadvantage in terms of the restriction on the area of sound reproduction. This area can be increased with the increase in the number of loudspeakers during reproduction. In order to limit the use of a large number of loudspeakers the sparse nature of the weight vector in the HOA signal model is utilized in this work. The problem of obtaining the weight vector is first formulated as a constrained optimization problem which is difficult to solve due to orthogonality property of the spherical harmonic matrix. This problem is therefore reformulated to exploit the sparse nature of the weight vector. The solution is then obtained by using the Bregman iteration method. Experiments on sound field reproduction in free space using the proposed sparsity based method are conducted using loudspeaker arrays. Performance improvements are noted when compared to least squares and compressed sensing methods in terms of sound field reproduction accuracy, subjective, and objective evaluations.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a novel sparsity based framework is proposed for accurate spatial sound field reproduction in spherical harmonic domain. The proposed framework can effectively reduce the number of loudspeakers required to reproduce the desired sound field using higher order ambisonics (HOA) over a fixed listening area. Although H OA provides accurate reproduction of spatial sound, it has a disadvantage in terms of the restriction on the area of sound reproduction. This area can be increased with the increase in the number of loudspeakers during reproduction. In order to limit the use of a large number of loudspeakers the sparse nature of the weight vector in the HOA signal model is utilized in this work. The problem of obtaining the weight vector is first formulated as a constrained optimization problem which is difficult to solve due to orthogonality property of the spherical harmonic matrix. This problem is therefore reformulated to exploit the sparse nature of the weight vector. The solution is then obtained by using the Bregman iteration method. Experiments on sound field reproduction in free space using the proposed sparsity based method are conducted using loudspeaker arrays. Performance improvements are noted when compared to least squares and compressed sensing methods in terms of sound field reproduction accuracy, subjective, and objective evaluations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏度的球谐域空间声音再现框架
本文提出了一种基于稀疏度的球谐域空间声场精确再现框架。所提出的框架可以有效地减少在固定收听区域使用高阶双声系统(HOA)再现所需声场所需的扬声器数量。虽然hoa提供了空间声音的精确再现,但它在声音再现面积的限制方面存在缺点。在重放过程中,这个区域可以随着扬声器数量的增加而增加。为了限制大量扬声器的使用,本文利用了HOA信号模型中权向量的稀疏特性。首先将权向量的求解问题表述为一个由于球调和矩阵的正交性而难以求解的约束优化问题。因此,这个问题被重新表述,以利用权向量的稀疏性质。然后用布雷格曼迭代法求解。利用该方法在自由空间进行了基于稀疏度的声场再现实验。在声场再现精度、主观和客观评价方面,与最小二乘和压缩感知方法相比,性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1