Comparing Machine Learning Methods for Air-to-Ground Path Loss Prediction

G. Vergos, S. Sotiroudis, G. Athanasiadou, G. Tsoulos, S. Goudos
{"title":"Comparing Machine Learning Methods for Air-to-Ground Path Loss Prediction","authors":"G. Vergos, S. Sotiroudis, G. Athanasiadou, G. Tsoulos, S. Goudos","doi":"10.1109/MOCAST52088.2021.9493374","DOIUrl":null,"url":null,"abstract":"Machine Learning-based models gain increasingly momentum regarding the problem of path loss prediction. The work at hand deploys four machine learning algorithms (k Nearest Neighbors - kNN, Support Vector Regression - SVR, Random Forest - RF and AdaBoost), in order to simulate the radio coverage provided from a flying base station in the greek city of Tripolis. Their comparison shows that tree-based ensemble models (RF and AdaBoost) can be used as fast and reliable alternatives to the Ray Tracing technique.","PeriodicalId":146990,"journal":{"name":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST52088.2021.9493374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Machine Learning-based models gain increasingly momentum regarding the problem of path loss prediction. The work at hand deploys four machine learning algorithms (k Nearest Neighbors - kNN, Support Vector Regression - SVR, Random Forest - RF and AdaBoost), in order to simulate the radio coverage provided from a flying base station in the greek city of Tripolis. Their comparison shows that tree-based ensemble models (RF and AdaBoost) can be used as fast and reliable alternatives to the Ray Tracing technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空对地路径损失预测的机器学习方法比较
基于机器学习的模型在路径损失预测问题上获得了越来越大的发展势头。手头的工作部署了四种机器学习算法(k最近邻- kNN,支持向量回归- SVR,随机森林- RF和AdaBoost),以模拟希腊城市Tripolis飞行基站提供的无线电覆盖。他们的比较表明,基于树的集成模型(RF和AdaBoost)可以作为射线追踪技术的快速可靠的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fish Morphological Feature Recognition Based on Deep Learning Techniques Design Steps towards a MCU-based Instrumentation System for Memristor-based Crossbar Arrays Advanced Teaching in Electromagnetics at the ELEDIA Research Center ATLAS toward the High Luminosity era: challenges on electronic systems Unsupervised Machine Learning in 6G Networks -State-of-the-art and Future Trends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1