Perceptron Multilayer Artificial Neural Network with Good Generalization

Tian Yubo, Dong Yue, Zhang Xiaoqiu, Zhu Renjie
{"title":"Perceptron Multilayer Artificial Neural Network with Good Generalization","authors":"Tian Yubo, Dong Yue, Zhang Xiaoqiu, Zhu Renjie","doi":"10.1109/ICEAA.2007.4387431","DOIUrl":null,"url":null,"abstract":"Feedforward perceptron multilayer (PML) ANNs with error back propagation learning method is often used in engineering design. Unfortunately, its generalization is often poor. In this paper, some reformative methods are proposed to improve its generalization. Based on the improved PML ANN, E-plane T-kind terminal matched load of rectangular waveguide is designed successfully. The result given by the ANN is agreeable with FDTD very well.","PeriodicalId":273595,"journal":{"name":"2007 International Conference on Electromagnetics in Advanced Applications","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2007.4387431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feedforward perceptron multilayer (PML) ANNs with error back propagation learning method is often used in engineering design. Unfortunately, its generalization is often poor. In this paper, some reformative methods are proposed to improve its generalization. Based on the improved PML ANN, E-plane T-kind terminal matched load of rectangular waveguide is designed successfully. The result given by the ANN is agreeable with FDTD very well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有良好泛化的感知器多层人工神经网络
具有误差反向传播学习方法的前馈感知器多层人工神经网络常用于工程设计。不幸的是,它的泛化往往很差。本文提出了一些改进方法,以提高其通用性。基于改进的PML神经网络,成功地设计了矩形波导的e平面t型终端匹配负载。人工神经网络的计算结果与时域有限差分法非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material Characterization Improvement in High Temperature Rectangular Waveguide Measurements Fast Direct Compression of the Plane Wave Response Matrix Design of uniformly radiating slotted coaxial cables Ground Penetrating Radar Image Focusing using Frequency-Wavenumber based Synthetic Aperture Radar Technique A Low Phase Noise Octa-Phase LC VCO for Multi-band Direct Conversion Receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1