GIO: A Timbre-informed Approach for Pitch Tracking in Highly Noisy Environments

Xiaoheng Sun, Xia Liang, Qiqi He, Bilei Zhu, Zejun Ma
{"title":"GIO: A Timbre-informed Approach for Pitch Tracking in Highly Noisy Environments","authors":"Xiaoheng Sun, Xia Liang, Qiqi He, Bilei Zhu, Zejun Ma","doi":"10.1145/3512527.3531393","DOIUrl":null,"url":null,"abstract":"As one of the fundamental tasks in music and speech signal processing, pitch tracking has been attracting attention for decades. While a human can focus on the voiced pitch even in highly noisy environments, most existing automatic pitch tracking systems show unsatisfactory performance encountering noise. To mimic human auditory, a data-driven model named GIO is proposed in this paper, in which timbre information is introduced to guide pitch tracking. The proposed model takes two inputs: a short audio segment to extract pitch from and a timbre embedding derived from the speaker's or singer's voice. In experiments, we use a music artist classification model to extract timbre embedding vectors. A dual-branch structure and a two-step training method are designed to enable the model to predict voice presence. The experimental results show that the proposed model gains a significant improvement in noise robustness and outperforms existing state-of-the-art methods with fewer parameters.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As one of the fundamental tasks in music and speech signal processing, pitch tracking has been attracting attention for decades. While a human can focus on the voiced pitch even in highly noisy environments, most existing automatic pitch tracking systems show unsatisfactory performance encountering noise. To mimic human auditory, a data-driven model named GIO is proposed in this paper, in which timbre information is introduced to guide pitch tracking. The proposed model takes two inputs: a short audio segment to extract pitch from and a timbre embedding derived from the speaker's or singer's voice. In experiments, we use a music artist classification model to extract timbre embedding vectors. A dual-branch structure and a two-step training method are designed to enable the model to predict voice presence. The experimental results show that the proposed model gains a significant improvement in noise robustness and outperforms existing state-of-the-art methods with fewer parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GIO:高噪声环境下音色跟踪的方法
音高跟踪作为音乐和语音信号处理的基础任务之一,几十年来一直受到人们的关注。即使在高噪声环境中,人类也可以专注于发声音高,但大多数现有的自动音高跟踪系统在遇到噪声时表现不佳。为了模拟人类听觉,本文提出了一种数据驱动的模型GIO,该模型引入音色信息来指导音高跟踪。该模型采用两个输入:一个用于提取音高的短音频片段,以及一个从说话者或歌手的声音中提取的音色嵌入。在实验中,我们使用音乐艺术家分类模型提取音色嵌入向量。设计了一种双分支结构和两步训练方法,使模型能够预测语音存在。实验结果表明,该模型在噪声鲁棒性方面有显著提高,并且在参数较少的情况下优于现有的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1