Xiaoheng Sun, Xia Liang, Qiqi He, Bilei Zhu, Zejun Ma
{"title":"GIO: A Timbre-informed Approach for Pitch Tracking in Highly Noisy Environments","authors":"Xiaoheng Sun, Xia Liang, Qiqi He, Bilei Zhu, Zejun Ma","doi":"10.1145/3512527.3531393","DOIUrl":null,"url":null,"abstract":"As one of the fundamental tasks in music and speech signal processing, pitch tracking has been attracting attention for decades. While a human can focus on the voiced pitch even in highly noisy environments, most existing automatic pitch tracking systems show unsatisfactory performance encountering noise. To mimic human auditory, a data-driven model named GIO is proposed in this paper, in which timbre information is introduced to guide pitch tracking. The proposed model takes two inputs: a short audio segment to extract pitch from and a timbre embedding derived from the speaker's or singer's voice. In experiments, we use a music artist classification model to extract timbre embedding vectors. A dual-branch structure and a two-step training method are designed to enable the model to predict voice presence. The experimental results show that the proposed model gains a significant improvement in noise robustness and outperforms existing state-of-the-art methods with fewer parameters.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
As one of the fundamental tasks in music and speech signal processing, pitch tracking has been attracting attention for decades. While a human can focus on the voiced pitch even in highly noisy environments, most existing automatic pitch tracking systems show unsatisfactory performance encountering noise. To mimic human auditory, a data-driven model named GIO is proposed in this paper, in which timbre information is introduced to guide pitch tracking. The proposed model takes two inputs: a short audio segment to extract pitch from and a timbre embedding derived from the speaker's or singer's voice. In experiments, we use a music artist classification model to extract timbre embedding vectors. A dual-branch structure and a two-step training method are designed to enable the model to predict voice presence. The experimental results show that the proposed model gains a significant improvement in noise robustness and outperforms existing state-of-the-art methods with fewer parameters.