Multitask Deep Learning for Edge Intelligence Video Surveillance System

Jiawei Li, Zhilong Zheng, Yiming Li, Rubao Ma, Shutao Xia
{"title":"Multitask Deep Learning for Edge Intelligence Video Surveillance System","authors":"Jiawei Li, Zhilong Zheng, Yiming Li, Rubao Ma, Shutao Xia","doi":"10.1109/INDIN45582.2020.9442166","DOIUrl":null,"url":null,"abstract":"From the mutual empowerment of two high-speed development technologies: artificial intelligence and edge computing, we propose a tailored Edge Intelligent Video Surveillance (EIVS) system. It is a scalable edge computing architecture and uses multitask deep learning for relevant computer vision tasks. Due to the potential application of different surveillance devices are widely different, we adopt a smart IoT module to normalize the video data of different cameras, thus the EIVS system can conveniently found proper data for a specific task. In addition, the deep learning models can be deployed at every EIVS nodes, to make computer vision tasks on the normalized data. Meanwhile, due to the training and deploying of deep learning model are usually separated, for the related tasks in the same scenario, we propose to collaboratively train the depth learning models in a multitask paradigm on the cloud server. The simulation results on the publicly available datasets show that the system continuously supports intelligent monitoring tasks, has good scalability, and can improve performance through multitask learning.","PeriodicalId":185948,"journal":{"name":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45582.2020.9442166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

From the mutual empowerment of two high-speed development technologies: artificial intelligence and edge computing, we propose a tailored Edge Intelligent Video Surveillance (EIVS) system. It is a scalable edge computing architecture and uses multitask deep learning for relevant computer vision tasks. Due to the potential application of different surveillance devices are widely different, we adopt a smart IoT module to normalize the video data of different cameras, thus the EIVS system can conveniently found proper data for a specific task. In addition, the deep learning models can be deployed at every EIVS nodes, to make computer vision tasks on the normalized data. Meanwhile, due to the training and deploying of deep learning model are usually separated, for the related tasks in the same scenario, we propose to collaboratively train the depth learning models in a multitask paradigm on the cloud server. The simulation results on the publicly available datasets show that the system continuously supports intelligent monitoring tasks, has good scalability, and can improve performance through multitask learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边缘智能视频监控系统的多任务深度学习
从人工智能和边缘计算两种高速发展技术的相互赋能出发,我们提出了一种量身定制的边缘智能视频监控(EIVS)系统。它是一个可扩展的边缘计算架构,并使用多任务深度学习来完成相关的计算机视觉任务。由于不同的监控设备的潜在应用有很大的不同,我们采用智能物联网模块对不同摄像机的视频数据进行归一化,从而使EIVS系统可以方便地找到适合特定任务的数据。此外,深度学习模型可以部署在每个EIVS节点上,对规范化数据进行计算机视觉任务。同时,由于深度学习模型的训练和部署通常是分开的,对于同一场景下的相关任务,我们提出在云服务器上以多任务范式协同训练深度学习模型。在公开数据集上的仿真结果表明,该系统持续支持智能监控任务,具有良好的可扩展性,可以通过多任务学习提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A GWO-AFSA-SVM Model-Based Fault Pattern Recognition for the Power Equipment of Autonomous vessels System and Software Engineering, Runtime Intelligence Sentiment Analysis of Chinese E-commerce Reviews Based on BERT IoT - and blockchain-enabled credible scheduling in cloud manufacturing: a systemic framework Industry Digitalisation, Digital Twins in Industrial Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1