Power grid frequency prediction using spatiotemporal modeling

Amanda Lenzi, J. Bessac, M. Anitescu
{"title":"Power grid frequency prediction using spatiotemporal modeling","authors":"Amanda Lenzi, J. Bessac, M. Anitescu","doi":"10.1002/sam.11535","DOIUrl":null,"url":null,"abstract":"Understanding power system dynamics is essential for interarea oscillation analysis and the detection of grid instabilities. The FNET/GridEye is a GPS‐synchronized wide‐area frequency measurement network that provides an accurate picture of the normal real‐time operational condition of the power system dynamics, giving rise to new and intricate spatiotemporal patterns of power loads. We propose to model FNET/GridEye grid frequency data from the U.S. Eastern Interconnection with a spatiotemporal statistical model. We predict the frequency data at locations without observations, a critical need during disruption events where measurement data are inaccessible. Spatial information is accounted for either as neighboring measurements in the form of covariates or with a spatiotemporal correlation model captured by a latent Gaussian field. The proposed method is useful in estimating power system dynamic response from limited phasor measurements and holds promise for predicting instability that may lead to undesirable effects such as cascading outages.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Understanding power system dynamics is essential for interarea oscillation analysis and the detection of grid instabilities. The FNET/GridEye is a GPS‐synchronized wide‐area frequency measurement network that provides an accurate picture of the normal real‐time operational condition of the power system dynamics, giving rise to new and intricate spatiotemporal patterns of power loads. We propose to model FNET/GridEye grid frequency data from the U.S. Eastern Interconnection with a spatiotemporal statistical model. We predict the frequency data at locations without observations, a critical need during disruption events where measurement data are inaccessible. Spatial information is accounted for either as neighboring measurements in the form of covariates or with a spatiotemporal correlation model captured by a latent Gaussian field. The proposed method is useful in estimating power system dynamic response from limited phasor measurements and holds promise for predicting instability that may lead to undesirable effects such as cascading outages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空建模的电网频率预测
了解电力系统动力学对于区域间振荡分析和电网不稳定检测至关重要。FNET/GridEye是一个GPS同步广域频率测量网络,可提供电力系统动态的正常实时运行条件的准确图像,从而产生新的复杂的电力负载时空模式。我们建议用一个时空统计模型来模拟来自美国东部电网的FNET/GridEye电网频率数据。我们在没有观测的位置预测频率数据,这是在无法获得测量数据的中断事件期间的关键需求。空间信息以协变量的形式作为相邻的测量,或者用潜在高斯场捕获的时空相关模型来解释。该方法可用于从有限相量测量中估计电力系统的动态响应,并有望预测可能导致级联停电等不良影响的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural interval‐censored survival regression with feature selection Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics Confidence bounds for threshold similarity graph in random variable network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1