Shortest confidence interval of parameter semi parametric regression model using spline truncated for longitudinal data

I. Budiantara, V. Ratnasari, E. Permatasari, Dasty Dewi Prawanti
{"title":"Shortest confidence interval of parameter semi parametric regression model using spline truncated for longitudinal data","authors":"I. Budiantara, V. Ratnasari, E. Permatasari, Dasty Dewi Prawanti","doi":"10.1063/1.5139746","DOIUrl":null,"url":null,"abstract":"Regression analysis is one method in statistics that used to know the pattern of functional relationships between response variables and predictor variables. Combination of parametric and nonparametric regression is semi parametric regression. The most popular estimator for nonparametric or semi parametric regression is spline truncated estimator. Problems in everyday life often using regression modeling with longitudinal data. Longitudinal data is a combination of cross-section data and time-series data. In longitudinal data, between subjects are independent of each other but between observations in the subject are dependent. One of the most important parts of statistical inference is interval estimation. Interval estimation aims to determine predictor variables that have a significant effect on the response variable. This study aims to obtain the form of interval estimation for parameters of semi parametric regression models using spline truncated estimator in longitudinal data. To solve this problem, the Weighted Least Square method and a pivotal quantity method were used for unknown population variance cases. The result of the theoretical study was that pivotal quantity distributed student-t. The shortest parameter interval estimation of semi parametric spline truncated regression model was obtained through the optimization process using the method of Lagrange.Regression analysis is one method in statistics that used to know the pattern of functional relationships between response variables and predictor variables. Combination of parametric and nonparametric regression is semi parametric regression. The most popular estimator for nonparametric or semi parametric regression is spline truncated estimator. Problems in everyday life often using regression modeling with longitudinal data. Longitudinal data is a combination of cross-section data and time-series data. In longitudinal data, between subjects are independent of each other but between observations in the subject are dependent. One of the most important parts of statistical inference is interval estimation. Interval estimation aims to determine predictor variables that have a significant effect on the response variable. This study aims to obtain the form of interval estimation for parameters of semi parametric regression models using spline truncated estimator in longitudinal data. To solve this problem, t...","PeriodicalId":246056,"journal":{"name":"THE 2ND INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT, AND EDUCATION","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE 2ND INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT, AND EDUCATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5139746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regression analysis is one method in statistics that used to know the pattern of functional relationships between response variables and predictor variables. Combination of parametric and nonparametric regression is semi parametric regression. The most popular estimator for nonparametric or semi parametric regression is spline truncated estimator. Problems in everyday life often using regression modeling with longitudinal data. Longitudinal data is a combination of cross-section data and time-series data. In longitudinal data, between subjects are independent of each other but between observations in the subject are dependent. One of the most important parts of statistical inference is interval estimation. Interval estimation aims to determine predictor variables that have a significant effect on the response variable. This study aims to obtain the form of interval estimation for parameters of semi parametric regression models using spline truncated estimator in longitudinal data. To solve this problem, the Weighted Least Square method and a pivotal quantity method were used for unknown population variance cases. The result of the theoretical study was that pivotal quantity distributed student-t. The shortest parameter interval estimation of semi parametric spline truncated regression model was obtained through the optimization process using the method of Lagrange.Regression analysis is one method in statistics that used to know the pattern of functional relationships between response variables and predictor variables. Combination of parametric and nonparametric regression is semi parametric regression. The most popular estimator for nonparametric or semi parametric regression is spline truncated estimator. Problems in everyday life often using regression modeling with longitudinal data. Longitudinal data is a combination of cross-section data and time-series data. In longitudinal data, between subjects are independent of each other but between observations in the subject are dependent. One of the most important parts of statistical inference is interval estimation. Interval estimation aims to determine predictor variables that have a significant effect on the response variable. This study aims to obtain the form of interval estimation for parameters of semi parametric regression models using spline truncated estimator in longitudinal data. To solve this problem, t...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纵向数据截断样条的参数半参数回归模型的最短置信区间
回归分析是统计学中的一种方法,用于了解响应变量与预测变量之间的函数关系模式。参数回归与非参数回归的结合是半参数回归。非参数或半参数回归最常用的估计量是样条截断估计量。在日常生活问题中经常使用纵向数据回归建模。纵向数据是横截面数据和时间序列数据的结合。在纵向数据中,受试者之间是相互独立的,但受试者之间的观测值是相互依赖的。区间估计是统计推断中最重要的部分之一。区间估计旨在确定对响应变量有显著影响的预测变量。本文的目的是利用纵向数据的样条截断估计量获得半参数回归模型参数的区间估计形式。针对这一问题,采用加权最小二乘法和枢纽量法对未知总体方差情况进行求解。理论研究的结果是关键量分布在student-t。采用拉格朗日方法对半参数样条截断回归模型进行优化,得到了最短参数区间估计。回归分析是统计学中的一种方法,用于了解响应变量与预测变量之间的函数关系模式。参数回归与非参数回归的结合是半参数回归。非参数或半参数回归最常用的估计量是样条截断估计量。在日常生活问题中经常使用纵向数据回归建模。纵向数据是横截面数据和时间序列数据的结合。在纵向数据中,受试者之间是相互独立的,但受试者之间的观测值是相互依赖的。区间估计是统计推断中最重要的部分之一。区间估计旨在确定对响应变量有显著影响的预测变量。本文的目的是利用纵向数据的样条截断估计量获得半参数回归模型参数的区间估计形式。为了解决这个问题,我……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The success of integrated education: Implementation of education policies and management in special services Virtual lab for vocational education in Indonesia: A review of the literature The effect of direct instruction and problem based learning on millennial Learning difficulties in microteaching class: A case study Education for sustainable development: Student’s biophilia and the Emome model as an alternative efforts of enhancement in the perspectives of education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1