Regularized differentiation of measurement data using a-priori information on signal and noise spectra

A. Miekina, R. Morawski
{"title":"Regularized differentiation of measurement data using a-priori information on signal and noise spectra","authors":"A. Miekina, R. Morawski","doi":"10.1109/IMTC.1990.66043","DOIUrl":null,"url":null,"abstract":"An algorithm for real-time differentiation of discrete measurement data is discussed. The effectiveness of this algorithm depends on a regularization parameter whose value should be fitted to the level of disturbance to which the data are subject. A simple method for choosing this value has been proposed and it requires only scanty a priori information on the data, namely, an estimate of the signal bandwidth and an estimate of the signal-to-noise ratio. The effectiveness of this method has been demonstrated using a few sets of synthetic data and computer experimentation methodology. It has been shown that the attainable accuracy of differentiation is very close to the optimum which may be reached via empirical optimization of the regularization parameter.<<ETX>>","PeriodicalId":404761,"journal":{"name":"7th IEEE Conference on Instrumentation and Measurement Technology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th IEEE Conference on Instrumentation and Measurement Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.1990.66043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An algorithm for real-time differentiation of discrete measurement data is discussed. The effectiveness of this algorithm depends on a regularization parameter whose value should be fitted to the level of disturbance to which the data are subject. A simple method for choosing this value has been proposed and it requires only scanty a priori information on the data, namely, an estimate of the signal bandwidth and an estimate of the signal-to-noise ratio. The effectiveness of this method has been demonstrated using a few sets of synthetic data and computer experimentation methodology. It has been shown that the attainable accuracy of differentiation is very close to the optimum which may be reached via empirical optimization of the regularization parameter.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用信号和噪声谱的先验信息对测量数据进行正则化微分
讨论了一种离散测量数据的实时微分算法。该算法的有效性取决于一个正则化参数,该参数的值应拟合到数据所受干扰的程度。已经提出了一种选择该值的简单方法,它只需要关于数据的少量先验信息,即对信号带宽的估计和对信噪比的估计。用几组合成数据和计算机实验方法验证了该方法的有效性。结果表明,可获得的微分精度非常接近于通过正则化参数的经验优化所能达到的最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical aspects of calibration procedures in network analyzers for nonlinear one port devices The digital measurement of low values of angular velocity and acceleration MMIC related metrology at the National Institute of Standards and Technology Parameter estimation in strongly nonlinear circuits Second order discriminant function for amplitude comparison monopulse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1