Fast Adaptive Anisotropic Filtering for Medical Image Enhancement

J. George, S.P. Indu
{"title":"Fast Adaptive Anisotropic Filtering for Medical Image Enhancement","authors":"J. George, S.P. Indu","doi":"10.1109/ISSPIT.2008.4775677","DOIUrl":null,"url":null,"abstract":"In this paper, local structure tensor (LST) based adaptive anisotropic filtering (AAF) methodology is used for medical image enhancement over different modalities. This filtering framework enhances and preserves anisotropic image structures while suppressing high-frequency noise. The goal of this work is to reduce the overall computational cost with minimum risk on accuracy by introducing optimized filternets for local structure analysis and reconstruction filtering. This filtering technique facilitates user interaction and direct control over high frequency contents of the signal. The efficacy of the filtering framework is evaluated by testing the system with medical images of different modalities. The results are compared using three different quality measures. Experimental results show that a good level of noise reduction along with structure enhancement can be achieved in the adaptively filtered images.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper, local structure tensor (LST) based adaptive anisotropic filtering (AAF) methodology is used for medical image enhancement over different modalities. This filtering framework enhances and preserves anisotropic image structures while suppressing high-frequency noise. The goal of this work is to reduce the overall computational cost with minimum risk on accuracy by introducing optimized filternets for local structure analysis and reconstruction filtering. This filtering technique facilitates user interaction and direct control over high frequency contents of the signal. The efficacy of the filtering framework is evaluated by testing the system with medical images of different modalities. The results are compared using three different quality measures. Experimental results show that a good level of noise reduction along with structure enhancement can be achieved in the adaptively filtered images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速自适应各向异性滤波医学图像增强
本文将基于局部结构张量(LST)的自适应各向异性滤波(AAF)方法用于不同模态的医学图像增强。该滤波框架在抑制高频噪声的同时增强并保留了各向异性图像结构。本工作的目标是通过引入优化的滤波器来进行局部结构分析和重建滤波,在降低总体计算成本的同时降低精度风险。这种滤波技术便于用户交互和直接控制信号的高频内容。通过对不同模式的医学图像进行测试,评估了过滤框架的有效性。使用三种不同的质量测量方法对结果进行比较。实验结果表明,自适应滤波后的图像具有较好的降噪效果和结构增强效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial signals addition for reducing PAPR of OFDM systems Iris Recognition System Using Combined Colour Statistics An Implementation of the Blowfish Cryptosystem Bspline based Wavelets with Lifting Implementation Advanced Bandwidth Brokering Architecture in PLC Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1