A Log-likelihood Regularized KL Divergence for Video Prediction With a 3D Convolutional Variational Recurrent Network

Haziq Razali, Basura Fernando
{"title":"A Log-likelihood Regularized KL Divergence for Video Prediction With a 3D Convolutional Variational Recurrent Network","authors":"Haziq Razali, Basura Fernando","doi":"10.1109/WACVW52041.2021.00027","DOIUrl":null,"url":null,"abstract":"The use of latent variable models has shown to be a powerful tool for modeling probability distributions over sequences. In this paper, we introduce a new variational model that extends the recurrent network in two ways for the task of video frame prediction. First, we introduce 3D convolutions inside all modules including the recurrent model for future frame prediction, inputting and outputting a sequence of video frames at each timestep. This enables us to better exploit spatiotemporal information inside the variational recurrent model, allowing us to generate high-quality predictions. Second, we enhance the latent loss of the variational model by introducing a maximum likelihood estimate in addition to the KL divergence that is commonly used in variational models. This simple extension acts as a stronger regularizer in the variational autoencoder loss function and lets us obtain better results and generalizability. Experiments show that our model outperforms existing video prediction methods on several benchmarks while requiring fewer parameters.","PeriodicalId":313062,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW52041.2021.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The use of latent variable models has shown to be a powerful tool for modeling probability distributions over sequences. In this paper, we introduce a new variational model that extends the recurrent network in two ways for the task of video frame prediction. First, we introduce 3D convolutions inside all modules including the recurrent model for future frame prediction, inputting and outputting a sequence of video frames at each timestep. This enables us to better exploit spatiotemporal information inside the variational recurrent model, allowing us to generate high-quality predictions. Second, we enhance the latent loss of the variational model by introducing a maximum likelihood estimate in addition to the KL divergence that is commonly used in variational models. This simple extension acts as a stronger regularizer in the variational autoencoder loss function and lets us obtain better results and generalizability. Experiments show that our model outperforms existing video prediction methods on several benchmarks while requiring fewer parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维卷积变分递归网络视频预测的对数似然正则化KL散度
潜在变量模型的使用已被证明是对序列上的概率分布进行建模的有力工具。本文介绍了一种新的变分模型,它从两个方面扩展了递归网络,用于视频帧预测。首先,我们在所有模块中引入3D卷积,包括用于未来帧预测的循环模型,在每个时间步长输入和输出视频帧序列。这使我们能够更好地利用变分循环模型中的时空信息,使我们能够生成高质量的预测。其次,我们通过在变分模型中常用的KL散度之外引入最大似然估计来增强变分模型的潜在损失。这个简单的扩展在变分自编码器损失函数中充当了一个更强的正则化器,使我们获得了更好的结果和泛化性。实验表明,我们的模型在几个基准测试中优于现有的视频预测方法,同时需要更少的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Virtual 3D City Generation for Synthetic Data Collection Facial Expression Neutralization With StoicNet Explainable Fingerprint ROI Segmentation Using Monte Carlo Dropout An Explainable Attention-Guided Iris Presentation Attack Detector Geeks and guests: Estimating player’s level of experience from board game behaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1