Yuetong Zhu, Danilo Vasconcellos Vargas, K. Sakurai
{"title":"Neural Cryptography Based on the Topology Evolving Neural Networks","authors":"Yuetong Zhu, Danilo Vasconcellos Vargas, K. Sakurai","doi":"10.1109/CANDARW.2018.00091","DOIUrl":null,"url":null,"abstract":"Modern cryptographic schemes is developed based on the mathematical theory. Recently works show a new direction about cryptography based on the neural networks. Instead of learning a specific algorithm, a cryptographic scheme is generated automatically. While one kind of neural network is used to achieve the scheme, the idea of the neural cryptography can be realized by other neural network architecture is unknown. In this paper, we make use of this property to create neural cryptography scheme on a new topology evolving neural network architecture called Spectrum-diverse unified neuroevolution architecture. First, experiments are conducted to verify that Spectrum-diverse unified neuroevolution architecture is able to achieve automatic encryption and decryption. Subsequently, we do experiments to achieve the neural symmetric cryptosystem by using adversarial training.","PeriodicalId":329439,"journal":{"name":"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDARW.2018.00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Modern cryptographic schemes is developed based on the mathematical theory. Recently works show a new direction about cryptography based on the neural networks. Instead of learning a specific algorithm, a cryptographic scheme is generated automatically. While one kind of neural network is used to achieve the scheme, the idea of the neural cryptography can be realized by other neural network architecture is unknown. In this paper, we make use of this property to create neural cryptography scheme on a new topology evolving neural network architecture called Spectrum-diverse unified neuroevolution architecture. First, experiments are conducted to verify that Spectrum-diverse unified neuroevolution architecture is able to achieve automatic encryption and decryption. Subsequently, we do experiments to achieve the neural symmetric cryptosystem by using adversarial training.