Se-Kyung Oh, Ying-Ying Zhang, H. Shin, I. Han, H. Kwon, Byoungchul Park, Sang-Uk Park, J. Bok, Ga-Won Lee, Jin-Suk Wang, H. Lee
{"title":"Study on palladium germanide on Ge-on-Si substrate for nanoscale Ge channel Schottky barrier MOSFETs","authors":"Se-Kyung Oh, Ying-Ying Zhang, H. Shin, I. Han, H. Kwon, Byoungchul Park, Sang-Uk Park, J. Bok, Ga-Won Lee, Jin-Suk Wang, H. Lee","doi":"10.1109/IWJT.2010.5474982","DOIUrl":null,"url":null,"abstract":"In this article, we investigated the fabrication and characteristics of Pd germanide Schottky contacts on n-type Ge substrate. It is shown that the lowest sheet resistance and uniform Pd germanide can be obtained by a one step RTP at 400 °C for 30 sec. The proposed Pd germanide/nGe contact exhibited electron Schottky barrier height and work function of 0.565~0.577 eV and 4.695~4.702 eV, respectively. Therefore, the proposed Pd germanide is promising for the nanoscale Schottky barrier Ge channel MOSFETs.","PeriodicalId":205070,"journal":{"name":"2010 International Workshop on Junction Technology Extended Abstracts","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Junction Technology Extended Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWJT.2010.5474982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this article, we investigated the fabrication and characteristics of Pd germanide Schottky contacts on n-type Ge substrate. It is shown that the lowest sheet resistance and uniform Pd germanide can be obtained by a one step RTP at 400 °C for 30 sec. The proposed Pd germanide/nGe contact exhibited electron Schottky barrier height and work function of 0.565~0.577 eV and 4.695~4.702 eV, respectively. Therefore, the proposed Pd germanide is promising for the nanoscale Schottky barrier Ge channel MOSFETs.