A new hybrid model of PSO and DE algorithm for data classification

Wannaporn Teekeng, Pornkid Unkaw
{"title":"A new hybrid model of PSO and DE algorithm for data classification","authors":"Wannaporn Teekeng, Pornkid Unkaw","doi":"10.1109/SNPD.2017.8022699","DOIUrl":null,"url":null,"abstract":"This paper presents a new hybrid HPSO-DE classification algorithm that combines the advantages of particle swarm optimization algorithm and differential evolution algorithm. Major improvements achieved by this combination are 1) flight improvement — flight behaviors are more and better diversified because each of the top 3 particles gets put into 3 different groups of the rest and then each group is mutated with a different operator and 2) particle improvement — members of a succeeding generation are composed of more of better particles than those of the current generation because better particles are allowed to produce more offspring. HPSO-DE and several other classification models were performance tested with 8 benchmarking datasets, and HPSO-DE was found to outperform them on 6 out of the 8.","PeriodicalId":186094,"journal":{"name":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2017.8022699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a new hybrid HPSO-DE classification algorithm that combines the advantages of particle swarm optimization algorithm and differential evolution algorithm. Major improvements achieved by this combination are 1) flight improvement — flight behaviors are more and better diversified because each of the top 3 particles gets put into 3 different groups of the rest and then each group is mutated with a different operator and 2) particle improvement — members of a succeeding generation are composed of more of better particles than those of the current generation because better particles are allowed to produce more offspring. HPSO-DE and several other classification models were performance tested with 8 benchmarking datasets, and HPSO-DE was found to outperform them on 6 out of the 8.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的PSO和DE混合模型的数据分类算法
结合粒子群优化算法和差分进化算法的优点,提出了一种新的混合HPSO-DE分类算法。通过这种组合实现的主要改进是1)飞行改进-飞行行为越来越多样化,因为前3个粒子中的每一个都被放入其余的3个不同的组中,然后每组都有不同的操作符突变2)粒子改进-下一代的成员比当前一代的成员由更多更好的粒子组成,因为更好的粒子可以产生更多的后代。用8个基准数据集对HPSO-DE和其他几个分类模型进行了性能测试,发现HPSO-DE在8个基准数据集中的6个上优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of localization strategy for island model genetic algorithm Relationship between the five factor model personality and learning effectiveness of teams in three information systems education courses Evaluating the work of experienced and inexperienced developers considering work difficulty in sotware development Intrusion detection using clustering of network traffic flows Intelligent integrated coking flue gas indices prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1