3D Micromolding of Small-Scale Biological Robots

Elizabeth E. Hunter, Evan W. Brink, E. Steager, Vijay R. Kumar
{"title":"3D Micromolding of Small-Scale Biological Robots","authors":"Elizabeth E. Hunter, Evan W. Brink, E. Steager, Vijay R. Kumar","doi":"10.1109/MARSS.2018.8481196","DOIUrl":null,"url":null,"abstract":"Small-scale robots are widely applicable for use in biological environments. Robots operating in these workspaces require non-cytotoxic and biodegradable architectures. Traditional methods of manufacturing millimeter or micrometer scale robots inherently preclude the use of many naturally-derived biological materials which fulfill these requirements. Fabrication via micromolding presents a practical method to incorporate these materials into the small-scale robot design space. In this work, we investigate the development of helical-shaped soft, micro bio robots (SMBRs) which are composed of naturally-derived, water-based hydrogels infused with iron oxide and are propelled using uniform, rotating magnetic fields. By incorporating a humectant into the molding process, we are able to create robots that are $\\pmb{3-10}\\times\\ \\mathbf{smaller}$ in characteristic dimensions and more than $\\pmb{50}\\times$ smaller in volume from our previous work. We explore the limitations of using stereolithography and two-photon polymerization printing processes to create molds, and demonstrate that our method can be used across length scales. We demonstrate and characterize the swimming behavior of microscale molded robots at a range of applied magnetic field frequencies, and compare their swimming velocity to their millimeter-scale counterparts. This work enables robot fabrication using functional biological materials, such that these robots can be used for biomedical tasks such as cellular and chemical cargo delivery.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Small-scale robots are widely applicable for use in biological environments. Robots operating in these workspaces require non-cytotoxic and biodegradable architectures. Traditional methods of manufacturing millimeter or micrometer scale robots inherently preclude the use of many naturally-derived biological materials which fulfill these requirements. Fabrication via micromolding presents a practical method to incorporate these materials into the small-scale robot design space. In this work, we investigate the development of helical-shaped soft, micro bio robots (SMBRs) which are composed of naturally-derived, water-based hydrogels infused with iron oxide and are propelled using uniform, rotating magnetic fields. By incorporating a humectant into the molding process, we are able to create robots that are $\pmb{3-10}\times\ \mathbf{smaller}$ in characteristic dimensions and more than $\pmb{50}\times$ smaller in volume from our previous work. We explore the limitations of using stereolithography and two-photon polymerization printing processes to create molds, and demonstrate that our method can be used across length scales. We demonstrate and characterize the swimming behavior of microscale molded robots at a range of applied magnetic field frequencies, and compare their swimming velocity to their millimeter-scale counterparts. This work enables robot fabrication using functional biological materials, such that these robots can be used for biomedical tasks such as cellular and chemical cargo delivery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小型生物机器人的三维微成型
小型机器人广泛适用于生物环境。在这些工作空间中工作的机器人需要无细胞毒性和可生物降解的结构。制造毫米或微米级机器人的传统方法固有地排除了许多满足这些要求的天然衍生生物材料的使用。微成型制造为将这些材料整合到小型机器人设计空间中提供了一种实用的方法。在这项工作中,我们研究了螺旋形软微型生物机器人(SMBRs)的开发,该机器人由注入氧化铁的天然水基水凝胶组成,并使用均匀的旋转磁场推进。通过在成型过程中加入湿润剂,我们能够制造出特征尺寸比我们以前的工作小3-10倍的机器人,体积比我们以前的工作小50倍以上。我们探索使用立体光刻和双光子聚合印刷工艺来创建模具的局限性,并证明我们的方法可以跨长度尺度使用。我们展示并表征了微尺度模塑机器人在一系列应用磁场频率下的游泳行为,并将其游泳速度与毫米尺度机器人进行了比较。这项工作使机器人制造使用功能生物材料,这样这些机器人可以用于生物医学任务,如细胞和化学货物运输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright Information Ferrofluid Levitated Micro/Milli-Robots Implementation Scheme of Orbital Refueling Using Microsate IIite Assembly of Cellular Microstructures into Lobule-Like 3D Microtissues Based on Microrobotic Manipulation* Research supported by the Beijing Natural Science Foundation under Grant 4164099and the National Natural Science Foundation of China under grants 61603044and 61520106011. Three Dimensional Microfabrication Using Local Electrophoretic Deposition Assisted with Laser Trapping Controlled by a Spatial Light Modulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1