Salus: A Novel Data-Driven Monitor that Enables Real-Time Safety in Autonomous Driving Systems

Bohan Zhang, Yafan Huang, Guanpeng Li
{"title":"Salus: A Novel Data-Driven Monitor that Enables Real-Time Safety in Autonomous Driving Systems","authors":"Bohan Zhang, Yafan Huang, Guanpeng Li","doi":"10.1109/QRS57517.2022.00019","DOIUrl":null,"url":null,"abstract":"This paper proposes Salus, a data-driven real-time safety monitor, that detects and mitigates safety violations of an autonomous vehicle (AV). The key insight is that traffic situations that lead to AV safety violations fall into patterns and can be identified by learning from the safety violations of the AV. Our approach is to use machine learning (ML) techniques to model the traffic behaviors that result in safety violations in the AV, characterize their early symptoms for training a preemptive model, hence deploy and detect real-time safety violations before the actual crashes happen to the AV. In order to train our ML model, we leverage a pipeline of fuzzing techniques to tailor AV-specific safety violation symptoms and generate the training data via data argumentation techniques. Our evaluation demonstrates our proposed technique is effective in reducing over 97.2% of safety violations in industry-level autonomous driving systems, such as Baidu Apollo, with no more than 0.018 false positive values.","PeriodicalId":143812,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS57517.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes Salus, a data-driven real-time safety monitor, that detects and mitigates safety violations of an autonomous vehicle (AV). The key insight is that traffic situations that lead to AV safety violations fall into patterns and can be identified by learning from the safety violations of the AV. Our approach is to use machine learning (ML) techniques to model the traffic behaviors that result in safety violations in the AV, characterize their early symptoms for training a preemptive model, hence deploy and detect real-time safety violations before the actual crashes happen to the AV. In order to train our ML model, we leverage a pipeline of fuzzing techniques to tailor AV-specific safety violation symptoms and generate the training data via data argumentation techniques. Our evaluation demonstrates our proposed technique is effective in reducing over 97.2% of safety violations in industry-level autonomous driving systems, such as Baidu Apollo, with no more than 0.018 false positive values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Salus:一种新型数据驱动监视器,可实现自动驾驶系统的实时安全
本文提出了Salus,一种数据驱动的实时安全监视器,可以检测和减轻自动驾驶汽车(AV)的安全违规行为。主要是交通情况导致AV安全违规行为分为可以识别模式和学习安全违规的AV。我们的方法是使用机器学习(ML)技术模型的交通行为,导致安全违规AV,描述他们的早期症状对于训练一个先发制人的模型,因此部署和实时检测在实际事故发生之前安全违规AV。为了训练我们毫升模型,我们利用一系列模糊测试技术来定制特定于自动驾驶汽车的安全违规症状,并通过数据论证技术生成训练数据。我们的评估表明,我们提出的技术有效地减少了97.2%以上的工业级自动驾驶系统的安全违规,如百度阿波罗,假阳性率不超过0.018。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuous Usability Requirements Evaluation based on Runtime User Behavior Mining Fine-Tuning Pre-Trained Model to Extract Undesired Behaviors from App Reviews An Empirical Study on Source Code Feature Extraction in Preprocessing of IR-Based Requirements Traceability Predictive Mutation Analysis of Test Case Prioritization for Deep Neural Networks Conceptualizing the Secure Machine Learning Operations (SecMLOps) Paradigm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1