{"title":"Class-specific pre-trained sparse autoencoders for learning effective features for document classification","authors":"Maysa I. Abdulhussain, J. Q. Gan","doi":"10.1109/CEEC.2016.7835885","DOIUrl":null,"url":null,"abstract":"Sparse autoencoder is a commonly used deep learning approach for automatically learning features from unlabelled data (unsupervised feature learning). This paper proposes class-specific (supervised) pre-trained approach based on sparse autoencoder to gain low-dimensional interesting structure of features with high performance in document classification. Experimental results have demonstrated the advantages and usefulness of the proposed method in document classification in high-dimensional feature space, in terms of the limited number of features required to achieve good classification accuracy.","PeriodicalId":114518,"journal":{"name":"2016 8th Computer Science and Electronic Engineering (CEEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Computer Science and Electronic Engineering (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2016.7835885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Sparse autoencoder is a commonly used deep learning approach for automatically learning features from unlabelled data (unsupervised feature learning). This paper proposes class-specific (supervised) pre-trained approach based on sparse autoencoder to gain low-dimensional interesting structure of features with high performance in document classification. Experimental results have demonstrated the advantages and usefulness of the proposed method in document classification in high-dimensional feature space, in terms of the limited number of features required to achieve good classification accuracy.