WikipediaBot: Machine Learning Assisted Adversarial Manipulation of Wikipedia Articles

Filipo Sharevski, Peter Jachim, Emma Pieroni
{"title":"WikipediaBot: Machine Learning Assisted Adversarial Manipulation of Wikipedia Articles","authors":"Filipo Sharevski, Peter Jachim, Emma Pieroni","doi":"10.1145/3477997.3478008","DOIUrl":null,"url":null,"abstract":"This paper presents an automated adversarial mechanism called WikipediaBot. WikipediaBot allows an adversary to create and control a bot infrastructure for the purpose of adversarial edits of Wikipedia articles. The WikipediaBot is a self-contained mechanism with modules for generating credentials for Wikipedia editors, bypassing login protections, and a production of contextually-relevant adversarial edits for target Wikipedia articles that evade conventional detection. The contextually-relevant adversarial edits are generated using an adversarial Markov chain that incorporates a linguistic manipulation attack known as MIM or malware-induced misperceptions. We conducted a preliminary qualitative analysis with a small focus group to test the effect of the adversarial edits in manipulating the perception a human reader has about a target Wikipedia article. Because the nefarious use of WikipediaBot could result in harmful damages to the integrity of a wide range of Wikipedia articles, we provide an elaborate discussion about the implications, detection, and defenses Wikipedia could employ to address the threat of automated adversarial manipulations.","PeriodicalId":130265,"journal":{"name":"Proceedings of the 2020 Workshop on DYnamic and Novel Advances in Machine Learning and Intelligent Cyber Security","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Workshop on DYnamic and Novel Advances in Machine Learning and Intelligent Cyber Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477997.3478008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an automated adversarial mechanism called WikipediaBot. WikipediaBot allows an adversary to create and control a bot infrastructure for the purpose of adversarial edits of Wikipedia articles. The WikipediaBot is a self-contained mechanism with modules for generating credentials for Wikipedia editors, bypassing login protections, and a production of contextually-relevant adversarial edits for target Wikipedia articles that evade conventional detection. The contextually-relevant adversarial edits are generated using an adversarial Markov chain that incorporates a linguistic manipulation attack known as MIM or malware-induced misperceptions. We conducted a preliminary qualitative analysis with a small focus group to test the effect of the adversarial edits in manipulating the perception a human reader has about a target Wikipedia article. Because the nefarious use of WikipediaBot could result in harmful damages to the integrity of a wide range of Wikipedia articles, we provide an elaborate discussion about the implications, detection, and defenses Wikipedia could employ to address the threat of automated adversarial manipulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WikipediaBot:机器学习辅助的维基百科文章的对抗性操作
本文提出了一种名为WikipediaBot的自动对抗机制。WikipediaBot允许攻击者创建和控制机器人基础设施,以对维基百科文章进行对抗性编辑。WikipediaBot是一个自包含的机制,其模块用于为维基百科编辑生成凭据,绕过登录保护,以及为目标维基百科文章生成与上下文相关的对抗性编辑,以逃避常规检测。与上下文相关的对抗性编辑是使用对抗性马尔可夫链生成的,该链包含称为MIM或恶意软件引起的误解的语言操纵攻击。我们对一个小型焦点小组进行了初步定性分析,以测试对抗性编辑在操纵人类读者对维基百科目标文章的看法方面的影响。由于恶意使用WikipediaBot可能会对大量维基百科文章的完整性造成有害损害,因此我们详细讨论了维基百科可以采用的含义、检测和防御措施,以解决自动对抗性操作的威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Program Behavior Analysis and Clustering using Performance Counters A Statistical Approach to Detecting Low-Throughput Exfiltration through the Domain Name System Protocol Efficient Black-Box Search for Adversarial Examples using Relevance Masks Why Deep Learning Makes it Difficult to Keep Secrets in FPGAs WikipediaBot: Machine Learning Assisted Adversarial Manipulation of Wikipedia Articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1