Edge detection in range images through morphological residue analysis

R. Krishnapuram, Sundeep Gupta
{"title":"Edge detection in range images through morphological residue analysis","authors":"R. Krishnapuram, Sundeep Gupta","doi":"10.1109/CVPR.1992.223123","DOIUrl":null,"url":null,"abstract":"Two morphological methods for edge detection in range images are proposed. The first method uses the opening and closing residues of structuring elements in orthogonal directions to detect roof and crease edges, and is essentially a morphological implementation of residue analysis techniques. The more general second method is based on a morphological version of the first derivative operator. This method utilizes dilation and erosion residues of structuring elements at different scales to reliably extract step edges along with roof edges and crease edges, and to classify each pixel as belonging to eight possible structure types: positive roof, negative roof, positive crease, negative crease, top of step, base of step, ramp, and constant surface. This method may be thought of as a morphological multiscale method.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Two morphological methods for edge detection in range images are proposed. The first method uses the opening and closing residues of structuring elements in orthogonal directions to detect roof and crease edges, and is essentially a morphological implementation of residue analysis techniques. The more general second method is based on a morphological version of the first derivative operator. This method utilizes dilation and erosion residues of structuring elements at different scales to reliably extract step edges along with roof edges and crease edges, and to classify each pixel as belonging to eight possible structure types: positive roof, negative roof, positive crease, negative crease, top of step, base of step, ramp, and constant surface. This method may be thought of as a morphological multiscale method.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于形态学残差分析的距离图像边缘检测
提出了两种用于距离图像边缘检测的形态学方法。第一种方法是利用结构元素在正交方向上的开合残差来检测顶板和折痕边缘,本质上是残差分析技术的形态学实现。更一般的第二种方法是基于一阶导数算子的形态学版本。该方法利用结构元素在不同尺度上的膨胀和侵蚀残余物,可靠地提取台阶边缘以及屋顶边缘和折痕边缘,并将每个像素划分为8种可能的结构类型:正屋顶、负屋顶、正折痕、负折痕、台阶顶部、台阶底部、斜坡和恒定表面。这种方法可以看作是一种形态学的多尺度方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion trajectories An heterogeneous M-SIMD architecture for Kalman filter controlled processing of image sequences Recognizing 3D objects from 2D images: an error analysis On the derivation of geometric constraints in stereo Computing stereo correspondences in the presence of narrow occluding objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1