Modeling and control active suspension system for a full car model

Rosheila Darus, Y. M. Sam
{"title":"Modeling and control active suspension system for a full car model","authors":"Rosheila Darus, Y. M. Sam","doi":"10.1109/CSPA.2009.5069178","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to investigate the performance of a full car model active suspension system using LQR controller. Dynamic model used in this study is a linear model. A linear model can capture basic performances of vehicle suspension such as body displacement, body acceleration, wheel displacement, wheel deflection, suspension travels, pitch and yawn. Performance of suspension system is determined by the ride comfort and vehicle handling. It can be measured by car body displacement and wheel displacement performance. Two types of road profiles are used as input for the system. Simulation is based on the mathematical model by using MATLAB/SIMULINK software. Results show that the performance of body displacement and wheel displacement can be improved by using Linear Quadratic Regulator control (LQR).","PeriodicalId":338469,"journal":{"name":"2009 5th International Colloquium on Signal Processing & Its Applications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 5th International Colloquium on Signal Processing & Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2009.5069178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

The purpose of this paper is to investigate the performance of a full car model active suspension system using LQR controller. Dynamic model used in this study is a linear model. A linear model can capture basic performances of vehicle suspension such as body displacement, body acceleration, wheel displacement, wheel deflection, suspension travels, pitch and yawn. Performance of suspension system is determined by the ride comfort and vehicle handling. It can be measured by car body displacement and wheel displacement performance. Two types of road profiles are used as input for the system. Simulation is based on the mathematical model by using MATLAB/SIMULINK software. Results show that the performance of body displacement and wheel displacement can be improved by using Linear Quadratic Regulator control (LQR).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整车模型主动悬架系统建模与控制
本文的目的是研究采用LQR控制器的全车型主动悬架系统的性能。本研究采用的动态模型为线性模型。线性模型可以捕捉车辆悬架的基本性能,如车身位移、车身加速度、车轮位移、车轮偏转、悬架行程、俯仰和哈欠。悬架系统的性能是由乘坐舒适性和车辆操控性决定的。它可以通过车身位移和车轮位移性能来测量。两种类型的道路轮廓被用作系统的输入。基于数学模型,利用MATLAB/SIMULINK软件进行仿真。结果表明,采用线性二次型调节器(LQR)控制可以改善车身位移和车轮位移的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual Material Gate Silicon on Insulator (DMGSOI) - Design impact on linearity Application of PID controller in controlling refrigerator temperature Housekeeping robot: From concept to design Development of an active RFID communicator for automatic control applications Design of a vision system as a coordinate measurement sensor in a 2D gantry crane control system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1