{"title":"Representation and self-similarity of shapes","authors":"Tyng-Luh Liu, D. Geiger, R. Kohn","doi":"10.1109/ICCV.1998.710858","DOIUrl":null,"url":null,"abstract":"Representing shapes is a significant problem for vision systems that must recognize or classify objects. We derive a representation for a given shape by investigating its self-similarities, and constructing its shape axis (SA) and shape axis tree (SA-tree). We start with a shape, its boundary contour, and two different parameterizations for the contour. To measure its self-similarity we consider matching pairs of points (and their tangents) along the boundary contour, i.e., matching the two parameterizations. The matching, of self-similarity criteria may vary, e.g., co-circularity, parallelism, distance, region homogeneity. The loci of middle points of the pairing contour points are the shape axis and they can be grouped into a unique tree graph, the SA-tree. The shape axis for the co-circularity criteria is compared to the symmetry axis. An interpretation in terms of object parts is also presented.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 130
Abstract
Representing shapes is a significant problem for vision systems that must recognize or classify objects. We derive a representation for a given shape by investigating its self-similarities, and constructing its shape axis (SA) and shape axis tree (SA-tree). We start with a shape, its boundary contour, and two different parameterizations for the contour. To measure its self-similarity we consider matching pairs of points (and their tangents) along the boundary contour, i.e., matching the two parameterizations. The matching, of self-similarity criteria may vary, e.g., co-circularity, parallelism, distance, region homogeneity. The loci of middle points of the pairing contour points are the shape axis and they can be grouped into a unique tree graph, the SA-tree. The shape axis for the co-circularity criteria is compared to the symmetry axis. An interpretation in terms of object parts is also presented.