A 7.11mJ/Gb/query data-driven machine learning processor (D2MLP) for big data analysis and applications

Chang-Hung Tsai, Tung-Yu Wu, S. Hsu, Chia-Ching Chu, Fang-Ju Ku, Ying-Siou Laio, Chih-Lung Chen, W. Wong, Hsie-Chia Chang, Chen-Yi Lee
{"title":"A 7.11mJ/Gb/query data-driven machine learning processor (D2MLP) for big data analysis and applications","authors":"Chang-Hung Tsai, Tung-Yu Wu, S. Hsu, Chia-Ching Chu, Fang-Ju Ku, Ying-Siou Laio, Chih-Lung Chen, W. Wong, Hsie-Chia Chang, Chen-Yi Lee","doi":"10.1109/VLSIC.2014.6858422","DOIUrl":null,"url":null,"abstract":"A data-driven machine learning processor (D2MLP) with MIMD architecture is designed for big data analysis. Adopting the configurable counting engine array with 3-layer dimension merging, the D2MLP processes maximal 1-128/1024 dimensional data with parallel 64/8 queries in learning stage. Implement in 90nm CMOS technology, the D2MLP achieves 219.9x and 8.2x faster processing time than CPU and GPGPU, respectively. In application phase, maximal 22.7k 128-class classifications/s are performed with the learned density model. Operated at 1.0V and 165MHz, the D2MLP demonstrates an energy-efficient solution for learning and classification with 7.11mJ/Gb/query and 2.3μJ/classification, respectively.","PeriodicalId":381216,"journal":{"name":"2014 Symposium on VLSI Circuits Digest of Technical Papers","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Circuits Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2014.6858422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A data-driven machine learning processor (D2MLP) with MIMD architecture is designed for big data analysis. Adopting the configurable counting engine array with 3-layer dimension merging, the D2MLP processes maximal 1-128/1024 dimensional data with parallel 64/8 queries in learning stage. Implement in 90nm CMOS technology, the D2MLP achieves 219.9x and 8.2x faster processing time than CPU and GPGPU, respectively. In application phase, maximal 22.7k 128-class classifications/s are performed with the learned density model. Operated at 1.0V and 165MHz, the D2MLP demonstrates an energy-efficient solution for learning and classification with 7.11mJ/Gb/query and 2.3μJ/classification, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
7.11mJ/Gb/查询数据驱动机器学习处理器(D2MLP),用于大数据分析和应用
针对大数据分析,设计了一种基于MIMD架构的数据驱动机器学习处理器(D2MLP)。D2MLP采用可配置的三层维合并计数引擎阵列,在学习阶段以并行64/8查询处理最大1-128/1024维数据。采用90nm CMOS技术,D2MLP的处理时间分别比CPU和GPGPU快219.9倍和8.2倍。在应用阶段,使用学习到的密度模型进行最大22.7k 128类分类/s。在1.0V和165MHz下,D2MLP的查询和分类效率分别为7.11 μ j /Gb/查询和2.3μJ/分类,是一种节能的学习和分类解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fully-differential capacitive touch controller with input common-mode feedback for symmetric display noise cancellation A single-chip encrypted wireless 12-lead ECG smart shirt for continuous health monitoring A power-harvesting pad-less mm-sized 24/60GHz passive radio with on-chip antennas ReRAM-based 4T2R nonvolatile TCAM with 7x NVM-stress reduction, and 4x improvement in speed-wordlength-capacity for normally-off instant-on filter-based search engines used in big-data processing 320×240 oversampled digital single photon counting image sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1