Chang-Hung Tsai, Tung-Yu Wu, S. Hsu, Chia-Ching Chu, Fang-Ju Ku, Ying-Siou Laio, Chih-Lung Chen, W. Wong, Hsie-Chia Chang, Chen-Yi Lee
{"title":"A 7.11mJ/Gb/query data-driven machine learning processor (D2MLP) for big data analysis and applications","authors":"Chang-Hung Tsai, Tung-Yu Wu, S. Hsu, Chia-Ching Chu, Fang-Ju Ku, Ying-Siou Laio, Chih-Lung Chen, W. Wong, Hsie-Chia Chang, Chen-Yi Lee","doi":"10.1109/VLSIC.2014.6858422","DOIUrl":null,"url":null,"abstract":"A data-driven machine learning processor (D2MLP) with MIMD architecture is designed for big data analysis. Adopting the configurable counting engine array with 3-layer dimension merging, the D2MLP processes maximal 1-128/1024 dimensional data with parallel 64/8 queries in learning stage. Implement in 90nm CMOS technology, the D2MLP achieves 219.9x and 8.2x faster processing time than CPU and GPGPU, respectively. In application phase, maximal 22.7k 128-class classifications/s are performed with the learned density model. Operated at 1.0V and 165MHz, the D2MLP demonstrates an energy-efficient solution for learning and classification with 7.11mJ/Gb/query and 2.3μJ/classification, respectively.","PeriodicalId":381216,"journal":{"name":"2014 Symposium on VLSI Circuits Digest of Technical Papers","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Circuits Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2014.6858422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A data-driven machine learning processor (D2MLP) with MIMD architecture is designed for big data analysis. Adopting the configurable counting engine array with 3-layer dimension merging, the D2MLP processes maximal 1-128/1024 dimensional data with parallel 64/8 queries in learning stage. Implement in 90nm CMOS technology, the D2MLP achieves 219.9x and 8.2x faster processing time than CPU and GPGPU, respectively. In application phase, maximal 22.7k 128-class classifications/s are performed with the learned density model. Operated at 1.0V and 165MHz, the D2MLP demonstrates an energy-efficient solution for learning and classification with 7.11mJ/Gb/query and 2.3μJ/classification, respectively.