{"title":"Bayesian Optimization with Switching Cost: Regret Analysis and Lookahead Variants","authors":"Peng Liu, Haowei Wang, Wei Qiyu","doi":"10.24963/ijcai.2023/446","DOIUrl":null,"url":null,"abstract":"Bayesian Optimization (BO) has recently received increasing attention due to its efficiency in optimizing expensive-to-evaluate functions. For some practical problems, it is essential to consider the path-dependent switching cost between consecutive sampling locations given a total traveling budget. For example, when using a drone to locate cracks in a building wall or search for lost survivors in the wild, the search path needs to be efficiently planned given the limited battery power of the drone. Tackling such problems requires a careful cost-benefit analysis of candidate locations and balancing exploration and exploitation. In this work, we formulate such a problem as a constrained Markov Decision Process (MDP) and solve it by proposing a new distance-adjusted multi-step look-ahead acquisition function, the distUCB, and using rollout approximation. We also provide a theoretical regret analysis of the distUCB-based Bayesian optimization algorithm. In addition, the empirical performance of the proposed algorithm is tested based on both synthetic and real data experiments, and it shows that our cost-aware non-myopic algorithm performs better than other popular alternatives.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bayesian Optimization (BO) has recently received increasing attention due to its efficiency in optimizing expensive-to-evaluate functions. For some practical problems, it is essential to consider the path-dependent switching cost between consecutive sampling locations given a total traveling budget. For example, when using a drone to locate cracks in a building wall or search for lost survivors in the wild, the search path needs to be efficiently planned given the limited battery power of the drone. Tackling such problems requires a careful cost-benefit analysis of candidate locations and balancing exploration and exploitation. In this work, we formulate such a problem as a constrained Markov Decision Process (MDP) and solve it by proposing a new distance-adjusted multi-step look-ahead acquisition function, the distUCB, and using rollout approximation. We also provide a theoretical regret analysis of the distUCB-based Bayesian optimization algorithm. In addition, the empirical performance of the proposed algorithm is tested based on both synthetic and real data experiments, and it shows that our cost-aware non-myopic algorithm performs better than other popular alternatives.