De-Shiun Fu, Ying-Zhih Chaung, Yen-Hung Lin, Yih-Lang Li
{"title":"Topology-driven cell layout migration with collinear constraints","authors":"De-Shiun Fu, Ying-Zhih Chaung, Yen-Hung Lin, Yih-Lang Li","doi":"10.1109/ICCD.2009.5413118","DOIUrl":null,"url":null,"abstract":"Traditional layout migration focuses on area minimization, thus suffered wire distortion, which caused loss of layout topology. A migrated layout inheriting original topology owns original design intention and predictable property, such as wire length which determines the path delay importantly. This work presents a new rectangular topological layout to preserve layout topology and combine its flexibility of handling wires with traditional scan-line based compaction algorithm for area minimization. The proposed migration flow contains devices and wires extraction, topological layout construction, unidirectional compression combining scan-line algorithm with collinear equation solver, and wire restoration. Experimental results show that cell topology is well preserved, and a several times runtime speedup is achieved as compared with recent migration research based on ILP (integer linear programming) formulation.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Traditional layout migration focuses on area minimization, thus suffered wire distortion, which caused loss of layout topology. A migrated layout inheriting original topology owns original design intention and predictable property, such as wire length which determines the path delay importantly. This work presents a new rectangular topological layout to preserve layout topology and combine its flexibility of handling wires with traditional scan-line based compaction algorithm for area minimization. The proposed migration flow contains devices and wires extraction, topological layout construction, unidirectional compression combining scan-line algorithm with collinear equation solver, and wire restoration. Experimental results show that cell topology is well preserved, and a several times runtime speedup is achieved as compared with recent migration research based on ILP (integer linear programming) formulation.