Forecasting of the Cases of Covid-19 Patients in Indonesia using Fuzzy Time Series

Lintang Patria
{"title":"Forecasting of the Cases of Covid-19 Patients in Indonesia using Fuzzy Time Series","authors":"Lintang Patria","doi":"10.33751/komputasi.v19i2.5446","DOIUrl":null,"url":null,"abstract":"The main objective of this study is forecasting of the cases of covid-19 patients in indonesia using fuzzy time series. The data used is from February 1, 2022 to February 28, 2022. The methods used are Fuzzy Time Series (FTS) Chen and FTS Cheng, using first order and second order. FTS is a forecasting method that uses rules and logic on fuzzy sets. The level of prediction accuracy is then calculated based on the Mean Absolute Percentage Error (MAPE) value. The MAPE values of these two methods are then compared to know which method is more suitable in this case study. The results showed that Fisrt Order FTS Chen produced an accuracy of 4,21% and Fisrt Order FTS Cheng produced an accuracy of 4,22%. Second Order FTS Chen and Second Order FTS Chen produced/1the same MAPE, 1,23%./1The results of this study indicate that Second Order FTS Chen and FTS Cheng produce good accuracy and can be used to predict new confirmed cases of Covid 19 sufferers in Indonesia.","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33751/komputasi.v19i2.5446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main objective of this study is forecasting of the cases of covid-19 patients in indonesia using fuzzy time series. The data used is from February 1, 2022 to February 28, 2022. The methods used are Fuzzy Time Series (FTS) Chen and FTS Cheng, using first order and second order. FTS is a forecasting method that uses rules and logic on fuzzy sets. The level of prediction accuracy is then calculated based on the Mean Absolute Percentage Error (MAPE) value. The MAPE values of these two methods are then compared to know which method is more suitable in this case study. The results showed that Fisrt Order FTS Chen produced an accuracy of 4,21% and Fisrt Order FTS Cheng produced an accuracy of 4,22%. Second Order FTS Chen and Second Order FTS Chen produced/1the same MAPE, 1,23%./1The results of this study indicate that Second Order FTS Chen and FTS Cheng produce good accuracy and can be used to predict new confirmed cases of Covid 19 sufferers in Indonesia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊时间序列的印尼新冠肺炎病例预测
本研究的主要目的是使用模糊时间序列预测印度尼西亚的covid-19患者病例。数据为2022年2月1日至2022年2月28日。使用的方法是模糊时间序列(FTS) Chen和FTS Cheng,使用一阶和二阶。FTS是一种在模糊集上运用规则和逻辑的预测方法。然后根据平均绝对百分比误差(MAPE)值计算预测精度水平。然后比较这两种方法的MAPE值,以确定哪种方法更适合本案例研究。结果表明,一阶FTS Chen的准确率为4.21%,一阶FTS Cheng的准确率为4.22%。二阶FTS Chen和二阶FTS Chen产生的MAPE相同,为1.23%。/1本研究结果表明,二阶傅立叶变换Chen和傅立叶变换Cheng具有较好的准确性,可用于预测印尼新增确诊病例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message Encryption in Digital Images using the Zhang LSB Imange Method Linear Kernel Optimization of Support Vector Machine Algorithm on Online Marketplace Sentiment Analysis Spatial Clustering Using Generalized LASSO on the Gender and Human Development Index in Papua Island in 2022 Application of the Naive Bayes Classifier Method and Fuzzy Analytical Hierarchy Process in Determining Books Eligible for Publishing Chaos CSPRNG Design As a Key in Symmetric Cryptography Using Logarithmic Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1