New DTZNN model for future minimization with cube steady-state error pattern using Taylor finite-difference formula

Yunong Zhang, Ying Fang, Bolin Liao, Tianjian Qiao, Hongzhou Tan
{"title":"New DTZNN model for future minimization with cube steady-state error pattern using Taylor finite-difference formula","authors":"Yunong Zhang, Ying Fang, Bolin Liao, Tianjian Qiao, Hongzhou Tan","doi":"10.1109/ICICIP.2015.7388156","DOIUrl":null,"url":null,"abstract":"In this paper, a discrete-time Zhang neural network (DTZNN) model, discretized from continuous-time Zhang neural network, is proposed and investigated for performing the online future minimization (OFM). In order to approximate more accurately the 1st-order derivative in computation and discretize more effectively the continuous-time Zhang neural network, a new Taylor-type numerical differentiation formula, together with the optimal sampling-gap rule, is presented and utilized to obtain the Taylor-type DTZNN model. For comparison, Euler-type DTZNN model and Newton iteration, with an interesting link being found, are also presented. Moreover, theoretical results of stability and convergence are presented, which show that the steady-state residual errors of the presented Taylor-type DTZNN model, Euler-type DTZNN model and Newton iteration have a pattern of 0(t3), 0(t2) and 0(t), respectively, with t denoting the sampling gap. Numerical experimental results further substantiate the effectiveness and advantages of the Taylor-type DTZNN model for solving the OFM problem.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, a discrete-time Zhang neural network (DTZNN) model, discretized from continuous-time Zhang neural network, is proposed and investigated for performing the online future minimization (OFM). In order to approximate more accurately the 1st-order derivative in computation and discretize more effectively the continuous-time Zhang neural network, a new Taylor-type numerical differentiation formula, together with the optimal sampling-gap rule, is presented and utilized to obtain the Taylor-type DTZNN model. For comparison, Euler-type DTZNN model and Newton iteration, with an interesting link being found, are also presented. Moreover, theoretical results of stability and convergence are presented, which show that the steady-state residual errors of the presented Taylor-type DTZNN model, Euler-type DTZNN model and Newton iteration have a pattern of 0(t3), 0(t2) and 0(t), respectively, with t denoting the sampling gap. Numerical experimental results further substantiate the effectiveness and advantages of the Taylor-type DTZNN model for solving the OFM problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于泰勒有限差分公式的立方体稳态误差模式的未来最小化新DTZNN模型
本文提出了一种离散时间张神经网络(DTZNN)模型,并对其进行了研究,用于在线未来最小化(OFM)。为了在计算中更精确地逼近一阶导数,更有效地离散连续张神经网络,提出了一种新的泰勒型数值微分公式,结合最优采样间隙规则,并利用该公式得到了泰勒型DTZNN模型。为了进行比较,欧拉型DTZNN模型和牛顿迭代模型之间也发现了一个有趣的联系。此外,给出了稳定性和收敛性的理论结果,表明所提出的泰勒型DTZNN模型、欧拉型DTZNN模型和牛顿迭代的稳态残差分别具有0(t3)、0(t2)和0(t)的模式,其中t表示采样间隙。数值实验结果进一步验证了泰勒型DTZNN模型求解OFM问题的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new integrable hamiltonian hierarchy and associated integrable coupling system Memristor-based neural network PID controller for buck converter Online critic-identifier-actor algorithm for optimal control of nonlinear systems Optimal control for deferrable loads scheduling under the constraint of electricity supply Performance analysis for WFRFT-OFDM systems to carrier frequency offset in doubly selective fading channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1