Natural gradient actor-critic algorithms using random rectangular coarse coding

Hajime Kimura
{"title":"Natural gradient actor-critic algorithms using random rectangular coarse coding","authors":"Hajime Kimura","doi":"10.1109/SICE.2008.4654995","DOIUrl":null,"url":null,"abstract":"Learning performance of natural gradient actor-critic algorithms is outstanding especially in high-dimensional spaces than conventional actor-critic algorithms. However, representation issues of stochastic policies or value functions are remaining because the actor-critic approaches need to design it carefully. The author has proposed random rectangular coarse coding, that is very simple and suited for approximating Q-values in high-dimensional state-action space. This paper shows a quantitative analysis of the random coarse coding comparing with regular-grid approaches, and presents a new approach that combines the natural gradient actor-critic with the random rectangular coarse coding.","PeriodicalId":152347,"journal":{"name":"2008 SICE Annual Conference","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SICE Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2008.4654995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Learning performance of natural gradient actor-critic algorithms is outstanding especially in high-dimensional spaces than conventional actor-critic algorithms. However, representation issues of stochastic policies or value functions are remaining because the actor-critic approaches need to design it carefully. The author has proposed random rectangular coarse coding, that is very simple and suited for approximating Q-values in high-dimensional state-action space. This paper shows a quantitative analysis of the random coarse coding comparing with regular-grid approaches, and presents a new approach that combines the natural gradient actor-critic with the random rectangular coarse coding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机矩形粗编码的自然梯度行为评价算法
自然梯度行为评价算法在高维空间的学习性能优于传统的行为评价算法。然而,随机策略或价值函数的表示问题仍然存在,因为行动者批评方法需要仔细设计它。作者提出了一种非常简单的随机矩形粗编码,适合于在高维状态-作用空间中逼近q值。本文对随机粗编码方法与正则网格方法进行了定量分析,提出了一种将自然梯度因子批评与随机矩形粗编码方法相结合的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Construction of a Cr2C2-C peritectic point cell for thermocouple calibration Touch-pen interface with local environment map for mobile robot navigation Natural gradient actor-critic algorithms using random rectangular coarse coding Inverse additive perturbation-based optimization of robust PSS in an interconnected power system with wind farms Growing topological map for SLAM of mobile robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1