Improved PSO-based feature construction algorithm using Feature Selection Methods

A. Mahanipour, H. Nezamabadi-pour
{"title":"Improved PSO-based feature construction algorithm using Feature Selection Methods","authors":"A. Mahanipour, H. Nezamabadi-pour","doi":"10.1109/CSIEC.2017.7940173","DOIUrl":null,"url":null,"abstract":"Feature construction (FC) can improve the classification performance by creating powerful features from the original ones. Particle Swarm Optimization (PSO) is a global search technique that can construct features directly. We believe that using raw features may lead the PSO-based FC method to an inefficient feature, so in this paper, the aim is to select the prominent features before applying PSO-based FC method. The Forward Feature Selection (FFS) method is used for selecting more informative feature subset from original set and constructing feature by the selected ones. Experimental results show that the proposed method can increase the accuracy by constructing a new powerful feature.","PeriodicalId":166046,"journal":{"name":"2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)","volume":"239 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIEC.2017.7940173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Feature construction (FC) can improve the classification performance by creating powerful features from the original ones. Particle Swarm Optimization (PSO) is a global search technique that can construct features directly. We believe that using raw features may lead the PSO-based FC method to an inefficient feature, so in this paper, the aim is to select the prominent features before applying PSO-based FC method. The Forward Feature Selection (FFS) method is used for selecting more informative feature subset from original set and constructing feature by the selected ones. Experimental results show that the proposed method can increase the accuracy by constructing a new powerful feature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征选择方法的改进pso特征构建算法
特征构建(FC)通过从原始特征中创建强大的特征来提高分类性能。粒子群优化(PSO)是一种可以直接构造特征的全局搜索技术。我们认为使用原始特征可能会导致基于pso的FC方法成为低效的特征,因此本文的目的是在应用基于pso的FC方法之前选择突出的特征。采用前向特征选择(FFS)方法,从原始特征集中选择信息更丰富的特征子集,并由所选择的特征子集构造特征。实验结果表明,该方法通过构造新的强大特征来提高识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG-based multi-class motor imagery classification using variable sized filter bank and enhanced One Versus One classifier MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective optimization A genetic approach in procedural content generation for platformer games level creation Using Recurrence quantification analysis and Generalized Hurst Exponents of ECG for human authentication Improved particle swarm optimization through orthogonal experimental design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1