The Interpretation Of Supervised Neural Networks

P.J.G. Lisboa, A. Mehridehnavi, P. Martin
{"title":"The Interpretation Of Supervised Neural Networks","authors":"P.J.G. Lisboa, A. Mehridehnavi, P. Martin","doi":"10.1109/NNAT.1993.586048","DOIUrl":null,"url":null,"abstract":"Classij-ication of cancer and normal animal tissues is carried out on the basis of their 'H Nuclear Magnetic Resonance (NMR) spectra with neural networks trained by Back-Error Propagation (BEP), using two direrent costfunctions. A log-likelihood costfinction is shown to result in accurate out-of-sample generalisation with a smaller network than the usual Least Mean Squared (ZMS) error. ntejirst step in the interpretation of the operation of neural networks is to quantiJjr the relevance of the input parameters to the diagnosis of each tissue class. Two techniques for achieving this are investigated, namely the Jacobian method and a logarithmic sensitivity matrix. The latter is demonstrated to result in a clearer signature which is consistent across direrent network architectures and also broadly in agreement with conventional statistical correlations.","PeriodicalId":164805,"journal":{"name":"Workshop on Neural Network Applications and Tools","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Neural Network Applications and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNAT.1993.586048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Classij-ication of cancer and normal animal tissues is carried out on the basis of their 'H Nuclear Magnetic Resonance (NMR) spectra with neural networks trained by Back-Error Propagation (BEP), using two direrent costfunctions. A log-likelihood costfinction is shown to result in accurate out-of-sample generalisation with a smaller network than the usual Least Mean Squared (ZMS) error. ntejirst step in the interpretation of the operation of neural networks is to quantiJjr the relevance of the input parameters to the diagnosis of each tissue class. Two techniques for achieving this are investigated, namely the Jacobian method and a logarithmic sensitivity matrix. The latter is demonstrated to result in a clearer signature which is consistent across direrent network architectures and also broadly in agreement with conventional statistical correlations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
监督神经网络的解释
癌症和正常动物组织的分类是基于它们的H核磁共振(NMR)光谱,使用两种不同的成本函数,使用反向误差传播(BEP)训练的神经网络进行的。对数似然代价函数被证明可以用比通常的最小均方误差(ZMS)更小的网络产生准确的样本外泛化。解释神经网络操作的第一步是量化输入参数与每个组织类别诊断的相关性。研究了实现这一目标的两种技术,即雅可比法和对数灵敏度矩阵。后者被证明可以产生更清晰的签名,该签名在不同的网络架构中是一致的,并且与传统的统计相关性也大致一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Kohonen Feature Maps To Monitor The Condition Of Synchronous Generators Improved Image Compression Using Backpropagation Networks A Neural Network Quality Classifier For Tig Welding Without Filler Intelligent Gain Scheduling (igs) Using Neural Networks For Robotic Manipulators Prototype Of A Neuro-fuzzy Controlled Model Lorry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1