Image classification using adapted codebook

Chengzhu Lin, Shaozi Li, Songzhi Su
{"title":"Image classification using adapted codebook","authors":"Chengzhu Lin, Shaozi Li, Songzhi Su","doi":"10.1109/ITIME.2009.5236269","DOIUrl":null,"url":null,"abstract":"Bag of visual words model deriving from text categorization has recently appeared promising for object and image classification, this method always need to deal with large database. This paper proposed an efficient clustering algorithm to obtain universal codebook and adapted codebook, our combination of k-means and agglomerative clustering gives significant improvement in time efficiency while maintaining the same performance of image classification. We also use the adapted codebook to improve image classification performance, an image is presented by a set of histograms - one per class, each histogram describes whether the image is best modeled by the universal codebook or the corresponding adapted class codebook. The experiment result on Caltech-256 shows the combined universal codebook and adapted class codebook representation outperforms those approaches which use the universal codebook only.","PeriodicalId":398477,"journal":{"name":"2009 IEEE International Symposium on IT in Medicine & Education","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on IT in Medicine & Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITIME.2009.5236269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Bag of visual words model deriving from text categorization has recently appeared promising for object and image classification, this method always need to deal with large database. This paper proposed an efficient clustering algorithm to obtain universal codebook and adapted codebook, our combination of k-means and agglomerative clustering gives significant improvement in time efficiency while maintaining the same performance of image classification. We also use the adapted codebook to improve image classification performance, an image is presented by a set of histograms - one per class, each histogram describes whether the image is best modeled by the universal codebook or the corresponding adapted class codebook. The experiment result on Caltech-256 shows the combined universal codebook and adapted class codebook representation outperforms those approaches which use the universal codebook only.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用自适应码本进行图像分类
基于文本分类的视觉词袋模型是近年来出现的一种很有前景的对象和图像分类方法,但这种方法往往需要处理大型数据库。本文提出了一种高效的聚类算法来获得通用码本和自适应码本,我们将k-means和聚类相结合,在保持图像分类性能不变的情况下,显著提高了时间效率。我们还使用自适应码本来提高图像的分类性能,图像由一组直方图表示——每个类一个,每个直方图描述图像是由通用码本还是相应的自适应类码本最好地建模。在Caltech-256上的实验结果表明,结合通用码本和自适应类码本表示的方法优于仅使用通用码本的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The design and implementation of campus network-based experimental materials management system Construction of engineering training center and the cultivation of talents for petroleum machinery Research and implementation of Course Teaching-Learning Process Management System The detecting technology for the transient feeble optical detection system Survey on demand for accounting talents and evaluation of professional competence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1