The Numerical Investigation of Thin-Walled Beams with Modified C-Sections

Michał Grenda
{"title":"The Numerical Investigation of Thin-Walled Beams with Modified C-Sections","authors":"Michał Grenda","doi":"10.2478/amtm-2018-0010","DOIUrl":null,"url":null,"abstract":"Abstract Demand for thin-walled structures has been increasing for many years. Cold- formed, thin-walled channel beams are the subject of presented research. The local elastic buckling and limit load of these beams subjected to pure bending are investigated. This study includes numerical investigation called the Finite Strip Method (FSM). The presented results give a deep insight into behaviour of such beams and may be used to validate analytical models. The number of works devoted to the theory of thin-walled structures has been steadily growing in recent years. It means that is an increasing interest in practical methods of manufacturing cold-formed thin-walled beams with complicated cross-sections, including also beams with web stiffeners. The ratio of transverse dimensions of beam to its wall-thickness is high, therefore, thin-walled beams are prone to local buckling that may interact with other buckling modes. The stability constraints should be always considered when using cold-formed thin-walled beams.","PeriodicalId":379471,"journal":{"name":"Archives of Mechanical Technology and Materials","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanical Technology and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amtm-2018-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Demand for thin-walled structures has been increasing for many years. Cold- formed, thin-walled channel beams are the subject of presented research. The local elastic buckling and limit load of these beams subjected to pure bending are investigated. This study includes numerical investigation called the Finite Strip Method (FSM). The presented results give a deep insight into behaviour of such beams and may be used to validate analytical models. The number of works devoted to the theory of thin-walled structures has been steadily growing in recent years. It means that is an increasing interest in practical methods of manufacturing cold-formed thin-walled beams with complicated cross-sections, including also beams with web stiffeners. The ratio of transverse dimensions of beam to its wall-thickness is high, therefore, thin-walled beams are prone to local buckling that may interact with other buckling modes. The stability constraints should be always considered when using cold-formed thin-walled beams.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修正c截面薄壁梁的数值研究
摘要近年来,对薄壁结构的需求不断增加。冷成形薄壁槽钢是本文的研究对象。研究了这些梁在纯弯曲作用下的局部弹性屈曲和极限荷载。这项研究包括称为有限条法(FSM)的数值研究。所提出的结果对这种梁的行为有了深入的了解,并可用于验证分析模型。近年来,致力于薄壁结构理论的著作数量稳步增长。这意味着人们对制造具有复杂截面的冷弯薄壁梁的实用方法越来越感兴趣,包括带有腹板加强筋的梁。梁的横向尺寸与壁厚之比很高,因此薄壁梁容易发生局部屈曲,并可能与其他屈曲模式相互作用。在使用冷弯薄壁梁时,必须考虑稳定性约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The structure of composite rollers with iron or nickel-iron base and hard surface layer of WC or TiC based hard alloy produced by the method of hot vacuum pressing with a liquid phase The use of Gage R&R in suitability analysis of a CMM used at FAMOT Pleszew Parametric study of friction stir welding using elastic return Numerical study of a cracked pipeline under internal pressure Computation of SIFs for cracked FGMs under mechanical and thermal loadings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1