Machine Learning to Evaluate Evolvability Defects: Code Metrics Thresholds for a Given Context

Naohiko Tsuda, H. Washizaki, Y. Fukazawa, Y. Yasuda, Shunsuke Sugimura
{"title":"Machine Learning to Evaluate Evolvability Defects: Code Metrics Thresholds for a Given Context","authors":"Naohiko Tsuda, H. Washizaki, Y. Fukazawa, Y. Yasuda, Shunsuke Sugimura","doi":"10.1109/QRS.2018.00022","DOIUrl":null,"url":null,"abstract":"Evolvability defects are non-understandable and non-modifiable states that do not directly produce runtime behavioral failures. Automatic source code evaluation by metrics and thresholds can help reduce the burden of a manual inspection. This study addresses two problems. (1) Evolvability defects are not usually managed in bug tracking systems. (2) Conventional methods cannot fully interpret the relations among the metrics in a given context (e.g., programming language, application domain). The key actions of our method are to (1) gather training-data for machine learning by experts' manual inspection of some of the files in given systems (benchmark) and (2) employ a classification-tree learner algorithm, C5.0, which can deal with non-orthogonal relations between metrics. Furthermore, we experimentally confirm that, even with less training-data, our method provides a more precise evaluation than four conventional methods (the percentile, Alves' method, Bender's method, and the ROC curve-based method).","PeriodicalId":114973,"journal":{"name":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2018.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Evolvability defects are non-understandable and non-modifiable states that do not directly produce runtime behavioral failures. Automatic source code evaluation by metrics and thresholds can help reduce the burden of a manual inspection. This study addresses two problems. (1) Evolvability defects are not usually managed in bug tracking systems. (2) Conventional methods cannot fully interpret the relations among the metrics in a given context (e.g., programming language, application domain). The key actions of our method are to (1) gather training-data for machine learning by experts' manual inspection of some of the files in given systems (benchmark) and (2) employ a classification-tree learner algorithm, C5.0, which can deal with non-orthogonal relations between metrics. Furthermore, we experimentally confirm that, even with less training-data, our method provides a more precise evaluation than four conventional methods (the percentile, Alves' method, Bender's method, and the ROC curve-based method).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估可演化性缺陷的机器学习:给定上下文的代码度量阈值
可演化性缺陷是不可理解和不可修改的状态,不会直接产生运行时行为失败。通过度量和阈值进行的自动源代码评估可以帮助减少手工检查的负担。这项研究解决了两个问题。(1)在bug跟踪系统中,通常不管理可演化性缺陷。(2)传统方法不能完全解释给定环境(如编程语言、应用领域)中度量之间的关系。我们的方法的关键动作是:(1)通过专家对给定系统(基准)中的一些文件进行人工检查来收集机器学习的训练数据;(2)采用分类树学习算法C5.0,该算法可以处理指标之间的非正交关系。此外,我们通过实验证实,即使训练数据较少,我们的方法也比四种传统方法(百分位数法、Alves法、Bender法和基于ROC曲线的方法)提供了更精确的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatically Repairing SQL Faults Using Crash Frequency Analysis to Identify Error-Prone Software Technologies in Multi-System Monitoring Target Selection for Test-Based Resource Adaptation The State of Practice on Virtual Reality (VR) Applications: An Exploratory Study on Github and Stack Overflow Detecting Errors in a Humanoid Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1