Hierarchical Statistical Learning of Generic Parts of Object Structure

S. Fidler, Gregor Berginc, A. Leonardis
{"title":"Hierarchical Statistical Learning of Generic Parts of Object Structure","authors":"S. Fidler, Gregor Berginc, A. Leonardis","doi":"10.1109/CVPR.2006.134","DOIUrl":null,"url":null,"abstract":"With the growing interest in object categorization various methods have emerged that perform well in this challenging task, yet are inherently limited to only a moderate number of object classes. In pursuit of a more general categorization system this paper proposes a way to overcome the computational complexity encompassing the enormous number of different object categories by exploiting the statistical properties of the highly structured visual world. Our approach proposes a hierarchical acquisition of generic parts of object structure, varying from simple to more complex ones, which stem from the favorable statistics of natural images. The parts recovered in the individual layers of the hierarchy can be used in a top-down manner resulting in a robust statistical engine that could be efficiently used within many of the current categorization systems. The proposed approach has been applied to large image datasets yielding important statistical insights into the generic parts of object structure.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

With the growing interest in object categorization various methods have emerged that perform well in this challenging task, yet are inherently limited to only a moderate number of object classes. In pursuit of a more general categorization system this paper proposes a way to overcome the computational complexity encompassing the enormous number of different object categories by exploiting the statistical properties of the highly structured visual world. Our approach proposes a hierarchical acquisition of generic parts of object structure, varying from simple to more complex ones, which stem from the favorable statistics of natural images. The parts recovered in the individual layers of the hierarchy can be used in a top-down manner resulting in a robust statistical engine that could be efficiently used within many of the current categorization systems. The proposed approach has been applied to large image datasets yielding important statistical insights into the generic parts of object structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对象结构共性部分的分层统计学习
随着对对象分类的兴趣日益浓厚,出现了各种方法,它们在这一具有挑战性的任务中表现良好,但本质上仅限于数量适中的对象类。为了追求一个更通用的分类系统,本文提出了一种利用高度结构化的视觉世界的统计特性来克服包含大量不同对象类别的计算复杂性的方法。我们的方法提出了从简单到复杂的物体结构的一般部分的分层获取,这源于自然图像的有利统计。在层次结构的各个层中恢复的部分可以以自顶向下的方式使用,从而产生一个健壮的统计引擎,可以在许多当前的分类系统中有效地使用。所提出的方法已应用于大型图像数据集,对对象结构的一般部分产生重要的统计见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1