UAV Path Planning for Data Gathering of IoT Nodes: Ant Colony or Simulated Annealing Optimization

H. Daryanavard, A. Harifi
{"title":"UAV Path Planning for Data Gathering of IoT Nodes: Ant Colony or Simulated Annealing Optimization","authors":"H. Daryanavard, A. Harifi","doi":"10.1109/IICITA.2019.8808834","DOIUrl":null,"url":null,"abstract":"Using UAVs is a promising solution for gathering information of the wireless IoT sensors in geographic areas. In this UAVs mission, due to battery-powered, the shortest possible path between sensors should be found. In this paper, two optimization methods including ant colony algorithm and simulated annealing algorithm are modeled in three-dimensional mode to compare the performance and execution time of these two methods in different size of sensors. The results shows the SA optimization can be performed faster than an ant colony optimization for benchmarks in which the number of sensors is less than 50.","PeriodicalId":369090,"journal":{"name":"2019 3rd International Conference on Internet of Things and Applications (IoT)","volume":"50 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Internet of Things and Applications (IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICITA.2019.8808834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Using UAVs is a promising solution for gathering information of the wireless IoT sensors in geographic areas. In this UAVs mission, due to battery-powered, the shortest possible path between sensors should be found. In this paper, two optimization methods including ant colony algorithm and simulated annealing algorithm are modeled in three-dimensional mode to compare the performance and execution time of these two methods in different size of sensors. The results shows the SA optimization can be performed faster than an ant colony optimization for benchmarks in which the number of sensors is less than 50.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网节点数据采集无人机路径规划:蚁群或模拟退火优化
使用无人机收集地理区域的无线物联网传感器信息是一种很有前途的解决方案。在这种无人机任务中,由于电池供电,传感器之间应该找到最短的可能路径。本文对蚁群算法和模拟退火算法两种优化方法进行了三维建模,比较了这两种方法在不同尺寸传感器下的性能和执行时间。结果表明,在传感器数量小于50的基准测试中,SA优化比蚁群优化执行速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IoT Enabled Vibration Monitoring Toward Smart Maintenance Evaluation of using LoRaWAN to implement AMI in big city of Tehran Smart Traffic Light Scheduling in Smart City Using Image and Video Processing Design of an IoT-Based System for Smart Maintenance of Medical Equipment Internet of Things (IoT) systems in future Cultural Heritage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1