Recursive Estimation of a Failure Probability for a Lipschitz Function

L. Bernard, A. Cohen, Arnaud Guyader Lpsm, Cermics, F. Malrieu
{"title":"Recursive Estimation of a Failure Probability for a Lipschitz Function","authors":"L. Bernard, A. Cohen, Arnaud Guyader Lpsm, Cermics, F. Malrieu","doi":"10.5802/smai-jcm.80","DOIUrl":null,"url":null,"abstract":"Let g : $\\Omega$ = [0, 1] d $\\rightarrow$ R denote a Lipschitz function that can be evaluated at each point, but at the price of a heavy computational time. Let X stand for a random variable with values in $\\Omega$ such that one is able to simulate, at least approximately, according to the restriction of the law of X to any subset of $\\Omega$. For example, thanks to Markov chain Monte Carlo techniques, this is always possible when X admits a density that is known up to a normalizing constant. In this context, given a deterministic threshold T such that the failure probability p := P(g(X)>T) may be very low, our goal is to estimate the latter with a minimal number of calls to g. In this aim, building on Cohen et al. [9], we propose a recursive and optimal algorithm that selects on the fly areas of interest and estimate their respective probabilities.","PeriodicalId":376888,"journal":{"name":"The SMAI journal of computational mathematics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The SMAI journal of computational mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/smai-jcm.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let g : $\Omega$ = [0, 1] d $\rightarrow$ R denote a Lipschitz function that can be evaluated at each point, but at the price of a heavy computational time. Let X stand for a random variable with values in $\Omega$ such that one is able to simulate, at least approximately, according to the restriction of the law of X to any subset of $\Omega$. For example, thanks to Markov chain Monte Carlo techniques, this is always possible when X admits a density that is known up to a normalizing constant. In this context, given a deterministic threshold T such that the failure probability p := P(g(X)>T) may be very low, our goal is to estimate the latter with a minimal number of calls to g. In this aim, building on Cohen et al. [9], we propose a recursive and optimal algorithm that selects on the fly areas of interest and estimate their respective probabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类Lipschitz函数失效概率的递归估计
设g: $\Omega$ = [0,1] d $\rightarrow$ R表示可以在每个点求值的Lipschitz函数,但代价是大量的计算时间。设X代表一个随机变量,其值为$\Omega$,使得人们能够根据X定律的限制,至少近似地模拟$\Omega$的任何子集。例如,由于马尔可夫链蒙特卡罗技术,当X承认一个已知的密度直到一个归一化常数时,这总是可能的。在这种情况下,给定一个确定性阈值T,使得失效概率p:= p (g(X)>T)可能非常低,我们的目标是通过对g的最小调用次数来估计后者。为此,在Cohen等人[9]的基础上,我们提出了一种递归的最优算法,该算法在飞行中选择感兴趣的区域并估计其各自的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid high-order methods for flow simulations in extremely large discrete fracture networks A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws Parallel kinetic scheme for transport equations in complex toroidal geometry Initialization of the Circulant Embedding method to speed up the generation of Gaussian random fields Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1