Adaptive architecture of polynomial artificial neural network to forecast nonlinear time series

E. Gómez-Ramírez, A. Poznyak, A. Gonzalez-Yunes, M. Avila-Alvarez
{"title":"Adaptive architecture of polynomial artificial neural network to forecast nonlinear time series","authors":"E. Gómez-Ramírez, A. Poznyak, A. Gonzalez-Yunes, M. Avila-Alvarez","doi":"10.1109/CEC.1999.781942","DOIUrl":null,"url":null,"abstract":"There are two important ways in which artificial neural networks are applied for dynamic system identification: preprocessing the training values, and adapting the architecture of the network. The article describes an adaptive process of the architecture of Polynomial Artificial Neural Network (PANN) using a genetic algorithm (GA) to improve the learning process. The optimal structure is obtained without previous knowledge of the behavior of the system to be identified. Due to the nature of the structure of PANN, it is possible to extract the necessary information of the nonlinear time series in order to minimize the training error. The importance of this work lies on adapting the architecture of PANN and processing the necessary inputs to minimize this error at the same time. The training error is compared with other networks used in the field to forecast chaotic time series.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.781942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

There are two important ways in which artificial neural networks are applied for dynamic system identification: preprocessing the training values, and adapting the architecture of the network. The article describes an adaptive process of the architecture of Polynomial Artificial Neural Network (PANN) using a genetic algorithm (GA) to improve the learning process. The optimal structure is obtained without previous knowledge of the behavior of the system to be identified. Due to the nature of the structure of PANN, it is possible to extract the necessary information of the nonlinear time series in order to minimize the training error. The importance of this work lies on adapting the architecture of PANN and processing the necessary inputs to minimize this error at the same time. The training error is compared with other networks used in the field to forecast chaotic time series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性时间序列预测的多项式人工神经网络自适应结构
将人工神经网络应用于动态系统辨识有两种重要的方法:对训练值进行预处理和对网络结构进行自适应。本文描述了多项式人工神经网络(PANN)结构的自适应过程,利用遗传算法(GA)来改进学习过程。在不知道待识别系统的行为的情况下获得最优结构。由于泛神经网络的结构性质,它可以提取非线性时间序列的必要信息,以最小化训练误差。这项工作的重要性在于调整PANN的体系结构,同时处理必要的输入以最小化这种误差。将训练误差与其他用于混沌时间序列预测的网络进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of a characteristic bimodal convergence-time/mutation-rate feature in evolutionary search Classifier systems evolving multi-agent system with distributed elitism A unified model of non-panmictic population structures in evolutionary algorithms Control of autonomous robots using fuzzy logic controllers tuned by genetic algorithms Oil reservoir production forecasting with uncertainty estimation using genetic algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1