State and faults estimation via Artificial Neural Networks

Dhouha Miri, Atef Khedher, K. BenOthman
{"title":"State and faults estimation via Artificial Neural Networks","authors":"Dhouha Miri, Atef Khedher, K. BenOthman","doi":"10.1109/STA50679.2020.9329322","DOIUrl":null,"url":null,"abstract":"This paper deals with the state and fault estimation for non linear systems modeled using the Takagi Sugeno approach. An artificial neural network with unknown inputs is used in the objective of estimate state and faults affecting the system. Firstly, the problem of state estimation is considered. In second step, the proposed approach is extended to the actuator fault estimations. The proposed method is applied to an academic example to show its efficiency.","PeriodicalId":158545,"journal":{"name":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"6 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA50679.2020.9329322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with the state and fault estimation for non linear systems modeled using the Takagi Sugeno approach. An artificial neural network with unknown inputs is used in the objective of estimate state and faults affecting the system. Firstly, the problem of state estimation is considered. In second step, the proposed approach is extended to the actuator fault estimations. The proposed method is applied to an academic example to show its efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的状态和故障估计
本文研究了用Takagi Sugeno方法建模的非线性系统的状态和故障估计。采用未知输入的人工神经网络来估计影响系统的状态和故障。首先,考虑了状态估计问题。第二步,将该方法推广到执行器故障估计中。通过实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and Performance Analysis of the Transceiver Duplex Filter using SIMULINK DSP Implementation of a Novel SPWM Algorithm Dedicated to the Delta Inverter Singularity representation and workspace determination of the parrallel robot PAR4 Identification of PWARX Model Based on Outer Bounding Ellipsoid Algorithm Fuzzy T2I Adaptive Backstepping Control for a State-Coupled Two-Tank System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1