A Low Complexity High Performance Weighted Neumann Series-based Massive MIMO Detection

Xiaofei Liu, Zhenyu Zhang, Xiyuan Wang, Jing Lian, Xiaoming Dai
{"title":"A Low Complexity High Performance Weighted Neumann Series-based Massive MIMO Detection","authors":"Xiaofei Liu, Zhenyu Zhang, Xiyuan Wang, Jing Lian, Xiaoming Dai","doi":"10.1109/WOCC.2019.8770550","DOIUrl":null,"url":null,"abstract":"In massive multiple-input multiple-output (MIMO) system, Neumann series (NS) expansion-based linear minimum mean square error (LMMSE) detection has been proposed due to its simple and efficient multi-stage pipeline hardware implementation. However, it suffers from poor performance and slow convergence as the number of the users grows. To address this issue, we proposed a novel weighted Neumann series (WNS)-based LMMSE detection to minimize the error between the exact matrix inversion and the WNS-based matrix inversion. Moreover, the optimal weights are obtained according to on-line learning basis. Numerical results indicate that the learning-based WNS detection outperforms the conventional NS-based detection and achieves near-LMMSE performance with a significantly lower computational complexity.","PeriodicalId":285172,"journal":{"name":"2019 28th Wireless and Optical Communications Conference (WOCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2019.8770550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In massive multiple-input multiple-output (MIMO) system, Neumann series (NS) expansion-based linear minimum mean square error (LMMSE) detection has been proposed due to its simple and efficient multi-stage pipeline hardware implementation. However, it suffers from poor performance and slow convergence as the number of the users grows. To address this issue, we proposed a novel weighted Neumann series (WNS)-based LMMSE detection to minimize the error between the exact matrix inversion and the WNS-based matrix inversion. Moreover, the optimal weights are obtained according to on-line learning basis. Numerical results indicate that the learning-based WNS detection outperforms the conventional NS-based detection and achieves near-LMMSE performance with a significantly lower computational complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于低复杂度、高性能加权诺伊曼级数的大规模MIMO检测
在大规模多输入多输出(MIMO)系统中,基于诺伊曼级数(NS)展开的线性最小均方误差(LMMSE)检测方法由于其简单高效的多级流水线硬件实现而被提出。但是,随着用户数量的增加,它的性能较差,收敛速度较慢。为了解决这个问题,我们提出了一种新的基于加权诺伊曼级数(WNS)的LMMSE检测方法,以最小化精确矩阵反演与基于WNS的矩阵反演之间的误差。根据在线学习的基础,得到最优权重。数值结果表明,基于学习的WNS检测优于传统的基于ns的检测,在显著降低计算复杂度的同时达到了接近lmmse的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rogue Base Station Detection Using A Machine Learning Approach Secrecy Performance Analysis for Hybrid Satellite Terrestrial Relay Networks with Multiple Eavesdroppers Challenges of Big Data Implementation in a Public Hospital Error Analysis of Single-Satellite Interference Source Positioning Based on Different Number of Co-Frequency Beams Design and Implementation of ΣΔ-3DT Based on Multi-Core DSP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1