LSTM Deep Learning vs ARIMA Algorithms for Univariate Time Series Forecasting: A case study

Jouilil Youness, Mentagui Driss
{"title":"LSTM Deep Learning vs ARIMA Algorithms for Univariate Time Series Forecasting: A case study","authors":"Jouilil Youness, Mentagui Driss","doi":"10.1109/ICOA55659.2022.9934119","DOIUrl":null,"url":null,"abstract":"This manuscript aims to study and compare the Long Short-Term Memory (LSTM) Deep learning to Auto regressive Integrated Moving Average (ARIMA) algorithms for a univariate time series, especially for stock price series. Using the mean absolute percentage error, the mean absolute error, or either root-mean-square deviation and according to our extracted dataset, we find that the classical approaches like ARIMA out-perform deep learning ones since they are very simple to use especially for linear univariate datasets. More specifically, LSTM deep learning algorithms are more powerful and provide better results in terms of predictions.","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This manuscript aims to study and compare the Long Short-Term Memory (LSTM) Deep learning to Auto regressive Integrated Moving Average (ARIMA) algorithms for a univariate time series, especially for stock price series. Using the mean absolute percentage error, the mean absolute error, or either root-mean-square deviation and according to our extracted dataset, we find that the classical approaches like ARIMA out-perform deep learning ones since they are very simple to use especially for linear univariate datasets. More specifically, LSTM deep learning algorithms are more powerful and provide better results in terms of predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LSTM深度学习与ARIMA算法在单变量时间序列预测中的应用
本文旨在研究和比较长短期记忆(LSTM)深度学习和自动回归综合移动平均(ARIMA)算法对单变量时间序列,特别是股票价格序列的影响。使用平均绝对百分比误差、平均绝对误差或均方根偏差,并根据我们提取的数据集,我们发现像ARIMA这样的经典方法优于深度学习方法,因为它们非常简单,特别是对于线性单变量数据集。更具体地说,LSTM深度学习算法更强大,在预测方面提供更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The importance of enterprise resource planning (ERP) in the optimisation of the small and medium enterprise's ressources in Morocco Nonsmooth Optimization for Synaptic Depression Dynamics 6G and V2X Communications: Applications, Features, and Challenges An Optimized Adaptive Learning Approach Based on Cuckoo Search Algorithm Waste solid management using Machine learning approch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1