Energy efficient low-voltage DC-grids for commercial buildings

R. Weiss, L. Ott, U. Boeke
{"title":"Energy efficient low-voltage DC-grids for commercial buildings","authors":"R. Weiss, L. Ott, U. Boeke","doi":"10.1109/ICDCM.2015.7152030","DOIUrl":null,"url":null,"abstract":"The European ENIAC R&D project consortium DC Components and Grid (DCC+G) is developing suitable, highly efficient components and sub systems for 380 VDC grid to show the benefits of DC grid concept on test site in an office environment. The newly developed DC grid components and their integration into a generic system are presented in this paper. The targeted overall efficiency saving compared to AC grid is 5% and the energy conversion from PV (photo voltaic) is calculated to be 7% more cost effective compared to traditional PV installations. This paper also shows the realized DC grid prototypesupplying an office building of the Fraunhofer Institute in Erlangen, Germany, and describes general benefits of a DC grid system. The DC grid prototype consists of a DC lighting system, a DC low power supply for IT infrastructure, DC electric vehicle charger, a DC μCHP unit, DC photovoltaic MPPT units, a central rectifier and grid controller unit as well as a mixed AC/DC power monitoring unit. It is shown that less conversion losses and higher distribution efficiency can be achieved with a 380 VDC grid compared to conventional AC grids.","PeriodicalId":110320,"journal":{"name":"2015 IEEE First International Conference on DC Microgrids (ICDCM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE First International Conference on DC Microgrids (ICDCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCM.2015.7152030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

The European ENIAC R&D project consortium DC Components and Grid (DCC+G) is developing suitable, highly efficient components and sub systems for 380 VDC grid to show the benefits of DC grid concept on test site in an office environment. The newly developed DC grid components and their integration into a generic system are presented in this paper. The targeted overall efficiency saving compared to AC grid is 5% and the energy conversion from PV (photo voltaic) is calculated to be 7% more cost effective compared to traditional PV installations. This paper also shows the realized DC grid prototypesupplying an office building of the Fraunhofer Institute in Erlangen, Germany, and describes general benefits of a DC grid system. The DC grid prototype consists of a DC lighting system, a DC low power supply for IT infrastructure, DC electric vehicle charger, a DC μCHP unit, DC photovoltaic MPPT units, a central rectifier and grid controller unit as well as a mixed AC/DC power monitoring unit. It is shown that less conversion losses and higher distribution efficiency can be achieved with a 380 VDC grid compared to conventional AC grids.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商业建筑用节能低压直流电网
欧洲ENIAC研发项目联盟DC组件和电网(DCC+G)正在开发适用于380 VDC电网的高效组件和子系统,以在办公环境的测试现场展示直流电网概念的优势。本文介绍了新开发的直流电网组件及其集成系统。与交流电网相比,目标整体效率节省5%,与传统光伏装置相比,PV(光伏)的能量转换计算出的成本效益高出7%。本文还展示了为德国埃尔兰根的弗劳恩霍夫研究所办公楼供电的直流电网原型,并描述了直流电网系统的一般优点。直流电网原型由直流照明系统、用于IT基础设施的直流低功率电源、直流电动汽车充电器、直流μCHP单元、直流光伏MPPT单元、中央整流器和电网控制器单元以及交直流混合电源监控单元组成。结果表明,与传统的交流电网相比,380直流电网可以实现更小的转换损耗和更高的配电效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supercapacitor-based DC-DC converter technique for DC-microgrids with UPS capability Modelling and measuring complex impedances of power electronic converters for stability assessment of low-voltage DC-grids Two-level control for fast electrical vehicle charging stations with multi flywheel energy storage system Technological and deployment challenges and user-response to uninterrupted DC (UDC) deployment in Indian homes Analysis of emerging technology for DC-enabled smart homes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1