FRP-Concrete Bond Behavior: A Parametric Study Through Pull-Off Testing

B. McSweeney, Maria M. Lopez
{"title":"FRP-Concrete Bond Behavior: A Parametric Study Through Pull-Off Testing","authors":"B. McSweeney, Maria M. Lopez","doi":"10.14359/14847","DOIUrl":null,"url":null,"abstract":"Synopsis: The sensitivity of the FRP-concrete bond failure load to changes in geometric and material parameters is described, and initial comparisons to predictions from existing bond models are made. To accomplish this, load and strain data from a series of single-lap pull-off tests is analyzed, in which carbon fiber reinforced polymer (CFRP) strips of varying width, thickness, and bonded length were pulled from concrete blocks of varying concrete strength. It was found that the concrete compressive strength had limited effects on the bond failure load, and longer bonded lengths increased the time up to failure load. Changes to the bonded width and FRP thickness had a significant impact on the bond failure load. Failure load predictions produced by three studied bond models were found to be strongly influenced by the material properties used as input, and were occasionally insensitive to the parameters varied.","PeriodicalId":151616,"journal":{"name":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/14847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Synopsis: The sensitivity of the FRP-concrete bond failure load to changes in geometric and material parameters is described, and initial comparisons to predictions from existing bond models are made. To accomplish this, load and strain data from a series of single-lap pull-off tests is analyzed, in which carbon fiber reinforced polymer (CFRP) strips of varying width, thickness, and bonded length were pulled from concrete blocks of varying concrete strength. It was found that the concrete compressive strength had limited effects on the bond failure load, and longer bonded lengths increased the time up to failure load. Changes to the bonded width and FRP thickness had a significant impact on the bond failure load. Failure load predictions produced by three studied bond models were found to be strongly influenced by the material properties used as input, and were occasionally insensitive to the parameters varied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
frp -混凝土粘结性能:通过拉脱试验的参数化研究
摘要:描述了frp -混凝土粘结破坏荷载对几何参数和材料参数变化的敏感性,并与现有粘结模型的预测结果进行了初步比较。为了实现这一目标,分析了一系列单圈拉脱试验的载荷和应变数据,其中从不同混凝土强度的混凝土块中拉出不同宽度、厚度和粘结长度的碳纤维增强聚合物(CFRP)条。结果表明,混凝土抗压强度对黏结破坏荷载的影响有限,黏结长度越长,到达破坏荷载的时间越长。粘结宽度和FRP厚度的变化对粘结破坏荷载有显著影响。研究发现,由三种键合模型产生的失效载荷预测受到作为输入的材料特性的强烈影响,并且有时对参数的变化不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FRP Repair Methods for FRP Repair Methods forUnreinforced Masonry Buildings Subject to Cyclic Loading Fire Endurance of Insulated FRP-Strengthened Square Concrete Columns Durability of CFRP Sheet Reinforcement through Exposure Tests An Innovative Hybrid FRP-ConcreteBridge System Innovative Technique for Seismic Upgrade of RC Square Columns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1