Study on Compressibility Control of Hyperelastic Material for Homogenization Method Using Mixed Finite Element Analysis

J. Okada, T. Hisada
{"title":"Study on Compressibility Control of Hyperelastic Material for Homogenization Method Using Mixed Finite Element Analysis","authors":"J. Okada, T. Hisada","doi":"10.1299/JCST.3.89","DOIUrl":null,"url":null,"abstract":"It is well known that the compressibility or incompressibility of biological tissue stems from its microscopic structure, which is generally composed of material with varied compressibility, including incompressibility. This paper proposes a framework for a homogenization method in which the compressibility/incompressibility of the macrostructure properly reflects that of the microstructure. The formulation is based on the mixed variational principle with a perturbed Lagrange-multiplier. It is shown that the rate of volumetric change of the macrostructure can be controlled through the homogenization procedure by introducing the constraint on the microstructure only. A couple of numerical examples are given to demonstrate the validity of the proposed method. By comparing the numerical results with theoretical solutions, the method is also confirmed to be free from locking.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.3.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is well known that the compressibility or incompressibility of biological tissue stems from its microscopic structure, which is generally composed of material with varied compressibility, including incompressibility. This paper proposes a framework for a homogenization method in which the compressibility/incompressibility of the macrostructure properly reflects that of the microstructure. The formulation is based on the mixed variational principle with a perturbed Lagrange-multiplier. It is shown that the rate of volumetric change of the macrostructure can be controlled through the homogenization procedure by introducing the constraint on the microstructure only. A couple of numerical examples are given to demonstrate the validity of the proposed method. By comparing the numerical results with theoretical solutions, the method is also confirmed to be free from locking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合有限元分析的均匀化方法下超弹性材料压缩性控制研究
众所周知,生物组织的可压缩性或不可压缩性源于其微观结构,其通常由具有不同可压缩性(包括不可压缩性)的材料组成。本文提出了一种均匀化方法的框架,其中宏观结构的可压缩性/不可压缩性适当地反映了微观结构的可压缩性。该公式基于混合变分原理和摄动拉格朗日乘子。结果表明,均匀化过程只需要引入微观组织的约束,就可以控制宏观组织的体积变化率。算例验证了该方法的有效性。通过数值结果与理论解的比较,也证实了该方法不存在锁紧问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Optimization of a Gas Burner for TPV Application Experimental and Numerical Approaches for Reliability Evaluation of Electronic Packaging Two-Layer Viscous Shallow-Water Equations and Conservation Laws Lattice Boltzmann Simulation of Two-Phase Viscoelastic Fluid Flows An Inexact Balancing Preconditioner for Large-Scale Structural Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1