Hmm-Based System for Recognizing Words in Historical Arabic Manuscript

M. Khorsheed
{"title":"Hmm-Based System for Recognizing Words in Historical Arabic Manuscript","authors":"M. Khorsheed","doi":"10.2316/Journal.206.2007.4.206-3000","DOIUrl":null,"url":null,"abstract":"This paper presents an omni-font Arabic word recognition system. The system is based on multiple Hidden Markov Models (HMMs). Each word in the lexicon is represented with a distinct HMM. The proposed system first extracts a set of spectral features from word images, then uses those features to tune HMM parameters. The performance of the proposed system is assessed using a corpus that includes both handwritten and computer-generated scripts. The likelihood probability of the input pattern is calculated against each word model and the pattern is assigned to the model with the highest probability.","PeriodicalId":206015,"journal":{"name":"Int. J. Robotics Autom.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/Journal.206.2007.4.206-3000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents an omni-font Arabic word recognition system. The system is based on multiple Hidden Markov Models (HMMs). Each word in the lexicon is represented with a distinct HMM. The proposed system first extracts a set of spectral features from word images, then uses those features to tune HMM parameters. The performance of the proposed system is assessed using a corpus that includes both handwritten and computer-generated scripts. The likelihood probability of the input pattern is calculated against each word model and the pattern is assigned to the model with the highest probability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于hmm的阿拉伯语历史手稿词识别系统
提出了一种全字体阿拉伯语单词识别系统。该系统基于多个隐马尔可夫模型(hmm)。词典中的每个单词都用一个不同的HMM表示。该系统首先从单词图像中提取一组光谱特征,然后利用这些特征对HMM参数进行调优。使用包含手写和计算机生成脚本的语料库来评估所建议系统的性能。根据每个单词模型计算输入模式的似然概率,并将模式分配给具有最高概率的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On solving the kinematics and Controlling of Origami Box-shaped robot, 405-415. Si Consensus of Multi-Agent Systems using Back-tracking and History following Algorithms Stabilizing control Algorithm for nonholonomic wheeled Mobile robots using adaptive integral sliding mode A velocity compensation Visual servo method for oculomotor control of bionic eyes On-Line trajectory Generation considering kinematic motion Constraints for robot manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1