Simulation of NR-V2X in a 5G Environment using OMNeT++

Suryanarayanaraju Pusapati, Bassant Selim, Yimin Nie, Huan-Ting Lin, Wei Peng
{"title":"Simulation of NR-V2X in a 5G Environment using OMNeT++","authors":"Suryanarayanaraju Pusapati, Bassant Selim, Yimin Nie, Huan-Ting Lin, Wei Peng","doi":"10.1109/FNWF55208.2022.00116","DOIUrl":null,"url":null,"abstract":"The advent of the 5G network provides reliable connectivity, higher throughput, better service quality and more efficient signaling. The network traffic load will continuously rise with more and more mobile users using internet services. In this context, there is a need to forecast wireless network traffic load to manage network resources efficiently and increase network resilience. However, with 5G being at its infancy stage, there is a lack of datasets available and consequently a lack of research on 5G traffic prediction related use cases. To overcome this challenge, simulation software can provide a way to generate 5G network traffic datasets. This paper proposes a simulation framework for New Radio Vehicle-to-Everything (NR-V2X) communications using the 5G simulator $\\mathbf{OMNeT}++$ with INET, Simu5G, and Veins modules. The performance of a VoIP uplink application is investigated over V2N in two scenarios, namely NRCar and Lumsden.","PeriodicalId":300165,"journal":{"name":"2022 IEEE Future Networks World Forum (FNWF)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Future Networks World Forum (FNWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FNWF55208.2022.00116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The advent of the 5G network provides reliable connectivity, higher throughput, better service quality and more efficient signaling. The network traffic load will continuously rise with more and more mobile users using internet services. In this context, there is a need to forecast wireless network traffic load to manage network resources efficiently and increase network resilience. However, with 5G being at its infancy stage, there is a lack of datasets available and consequently a lack of research on 5G traffic prediction related use cases. To overcome this challenge, simulation software can provide a way to generate 5G network traffic datasets. This paper proposes a simulation framework for New Radio Vehicle-to-Everything (NR-V2X) communications using the 5G simulator $\mathbf{OMNeT}++$ with INET, Simu5G, and Veins modules. The performance of a VoIP uplink application is investigated over V2N in two scenarios, namely NRCar and Lumsden.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于omnet++的5G环境下NR-V2X仿真
5G网络的出现提供了更可靠的连接、更高的吞吐量、更好的业务质量和更高效的信令。随着越来越多的移动用户使用互联网服务,网络流量负荷将不断上升。在这种情况下,需要对无线网络流量负载进行预测,以有效地管理网络资源,提高网络的弹性。然而,由于5G处于起步阶段,缺乏可用的数据集,因此缺乏对5G流量预测相关用例的研究。为了克服这一挑战,仿真软件可以提供一种生成5G网络流量数据集的方法。本文提出了一个新的无线车对万物(NR-V2X)通信的仿真框架,该框架使用5G模拟器$\mathbf{OMNeT}++$,其中包含INET、Simu5G和vein模块。在NRCar和Lumsden两种场景下,研究了V2N下VoIP上行应用的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SliceSecure: Impact and Detection of DoS/DDoS Attacks on 5G Network Slices A Score Function Heuristic for Crosstalk- and Fragmentation-Aware Dynamic Routing, Modulation, Core, and Spectrum Allocation in SDM-EONs Machine Learning Aided Design of Sub-Array MIMO Antennas for CubeSats Based on 3D Printed Metallic Ridge Gap Waveguides A Supra-Disciplinary Open Framework of Knowledge to Address the Future Challenges of a Network of Feelings Resource Allocation with Vickrey-Dutch Auctioning Game for C-RAN Fronthaul
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1