Belief fusion, pignistic probabilities, and information content in fusing tracking attributes

John J. Sudano
{"title":"Belief fusion, pignistic probabilities, and information content in fusing tracking attributes","authors":"John J. Sudano","doi":"10.1109/NRC.2004.1316425","DOIUrl":null,"url":null,"abstract":"In the design of information fusion systems, the reduction of computational complexity is a key design parameter for real-time implementations. One way to simplify the computations is to decompose the system into subsystems of noncorrelated informational components, such as a qualitative informational component, a quantitative informational component, and a complement informational component. A probability information content (PIC) variable assigns an information content value to any set of system or sub-system probability distributions. The PIC variable is the normalized entropy computed from the probability distribution. This article derives a PIC variable for a subsystem represented by the complement probabilities. This article also derives a relationship between the PIC variable of sub-system components and the system informational PIC variable. A series of pignistic probability transforms are presented that estimate the probability for any belief data set. The generalized belief fusion method of combining independent multi-source beliefs is presented.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":"1975 7‐8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In the design of information fusion systems, the reduction of computational complexity is a key design parameter for real-time implementations. One way to simplify the computations is to decompose the system into subsystems of noncorrelated informational components, such as a qualitative informational component, a quantitative informational component, and a complement informational component. A probability information content (PIC) variable assigns an information content value to any set of system or sub-system probability distributions. The PIC variable is the normalized entropy computed from the probability distribution. This article derives a PIC variable for a subsystem represented by the complement probabilities. This article also derives a relationship between the PIC variable of sub-system components and the system informational PIC variable. A series of pignistic probability transforms are presented that estimate the probability for any belief data set. The generalized belief fusion method of combining independent multi-source beliefs is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合追踪属性时的信念融合、吝啬概率和信息内容
在信息融合系统的设计中,降低计算复杂度是实时实施的一个关键设计参数。简化计算的一种方法是将系统分解为非相关信息成分的子系统,如定性信息成分、定量信息成分和补充信息成分。概率信息含量(PIC)变量为任意一组系统或子系统概率分布赋予一个信息含量值。PIC 变量是根据概率分布计算出的归一化熵。本文推导了由补码概率代表的子系统的 PIC 变量。本文还推导了子系统组件的 PIC 变量与系统信息 PIC 变量之间的关系。本文提出了一系列估计任何信念数据集概率的信念概率变换。介绍了结合独立多源信念的广义信念融合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced geostationary radar for hurricane monitoring and studies Effect of system geometry of multi-sensor on accuracy of target position estimation Crossbeam wind measurements with phased array Doppler weather radar: theory Physics-based airborne GMTI radar signal processing Optimal invariant test in coherent radar detection with unknown parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1