Biometric Verification Based on ECG Signal using 1 Dimensional Convolutional Neural Network

F. F. Taliningsih, Y. Fu’adah, S. Rizal, Achmad Rizal, M. A. Pramudito, Giyan Sukma Pratama, Andi Fany
{"title":"Biometric Verification Based on ECG Signal using 1 Dimensional Convolutional Neural Network","authors":"F. F. Taliningsih, Y. Fu’adah, S. Rizal, Achmad Rizal, M. A. Pramudito, Giyan Sukma Pratama, Andi Fany","doi":"10.1109/ICISIT54091.2022.9872891","DOIUrl":null,"url":null,"abstract":"Biometric is an analysis of individual characteristics. For instance, fingerprint, voice, i ris, a nd face a re biometrics. Nowadays, those methods are often used; it still has the disadvantage of being easy to manipulate. Identification using Electrocardiogram (ECG) signal is one of the biometric methods developed to prevent individual manipulation since ECG signals are unique for each individual. This study designed a system using ECG signals for biometric verification. The ECG signals are unique since each individual has different physiological, geometric, and characteristics. The ECG-ID dataset used for evaluation contains 90 subjects. The One Dimensioanal Convolutional Neural Network is used in this research. We compared the difference using two ECG signal fragments, namely PQRST and PQRS waves. The best results show an accuracy of 91.57% using PQRST waves. This proposed study is feasible enough to be used as verification biometrics.","PeriodicalId":214014,"journal":{"name":"2022 1st International Conference on Information System & Information Technology (ICISIT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 1st International Conference on Information System & Information Technology (ICISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIT54091.2022.9872891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biometric is an analysis of individual characteristics. For instance, fingerprint, voice, i ris, a nd face a re biometrics. Nowadays, those methods are often used; it still has the disadvantage of being easy to manipulate. Identification using Electrocardiogram (ECG) signal is one of the biometric methods developed to prevent individual manipulation since ECG signals are unique for each individual. This study designed a system using ECG signals for biometric verification. The ECG signals are unique since each individual has different physiological, geometric, and characteristics. The ECG-ID dataset used for evaluation contains 90 subjects. The One Dimensioanal Convolutional Neural Network is used in this research. We compared the difference using two ECG signal fragments, namely PQRST and PQRS waves. The best results show an accuracy of 91.57% using PQRST waves. This proposed study is feasible enough to be used as verification biometrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于一维卷积神经网络的心电信号生物特征验证
生物计量学是对个体特征的分析。例如,指纹、声音、指纹和人脸等生物识别技术。如今,这些方法经常被使用;它仍然有易于操作的缺点。利用心电图(ECG)信号进行识别是为了防止个人操纵而开发的生物识别方法之一,因为每个人的心电图信号都是独一无二的。本研究设计了一个利用心电信号进行生物特征验证的系统。心电信号是独一无二的,因为每个人都有不同的生理、几何和特征。用于评估的ECG-ID数据集包含90个受试者。本研究采用了一维卷积神经网络。我们使用两个心电信号片段,即PQRST波和PQRS波来比较两者的差异。结果表明,PQRST波的精度为91.57%。本研究具有足够的可行性,可作为验证生物识别技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Employee Attendance Mobile Application Problems Based on User Reviews: A Case Study Information System Analysis And Design For Mobile-Based Homain Applications Classification of Glaucoma in Fundus Images Using Convolutional Neural Network with MobileNet Architecture Kampusku: Information Portal Mobile Application Design of Private Universities in Indonesia Measurement of Employee Information Security Awareness on Data Security: A Case Study at XYZ Polytechnic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1