Alexander S. Delke, A. Annema, M. S. O. Alink, Yanyu Jin, Jos Verlinden, B. Nauta
{"title":"A Colpitts-Based Frequency Reference Achieving a Single-Trim ± 120ppm Accuracy from -50 to 170°C","authors":"Alexander S. Delke, A. Annema, M. S. O. Alink, Yanyu Jin, Jos Verlinden, B. Nauta","doi":"10.1109/CICC48029.2020.9075878","DOIUrl":null,"url":null,"abstract":"A single-trim, high accuracy frequency reference is presented. The Colpitts LC-oscillator topology reduces the temperature dependencies of the LC-tank quality factor on the oscillation frequency. With a fractional divider for frequency compensation it can serve as crystal-replacement. Measurements of the prototype (16 samples) in a $0.13\\mu \\mathrm{m}$ high-voltage CMOS SOI process show $\\pm 120\\mathrm{ppm}$ accuracy from -50 to 170°C. The oscillator dissipates 3.5mW from a 2.5V supply and has 220ppm/V supply-sensitivity without supply regulation.","PeriodicalId":409525,"journal":{"name":"2020 IEEE Custom Integrated Circuits Conference (CICC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC48029.2020.9075878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A single-trim, high accuracy frequency reference is presented. The Colpitts LC-oscillator topology reduces the temperature dependencies of the LC-tank quality factor on the oscillation frequency. With a fractional divider for frequency compensation it can serve as crystal-replacement. Measurements of the prototype (16 samples) in a $0.13\mu \mathrm{m}$ high-voltage CMOS SOI process show $\pm 120\mathrm{ppm}$ accuracy from -50 to 170°C. The oscillator dissipates 3.5mW from a 2.5V supply and has 220ppm/V supply-sensitivity without supply regulation.