Acceleration of dRMSD calculation and efficient usage of GPU caches

J. Filipovič, Jan Plhak, D. Střelák
{"title":"Acceleration of dRMSD calculation and efficient usage of GPU caches","authors":"J. Filipovič, Jan Plhak, D. Střelák","doi":"10.1109/HPCSim.2015.7237020","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the GPU acceleration of dRMSD algorithm, used to compare different structures of a molecule. Comparing to multithreaded CPU implementation, we have reached 13.4× speedup in clustering and 62.7× speedup in I:I dRMSD computation using mid-end GPU. The dRMSD computation exposes strong memory locality and thus is compute-bound. Along with conservative implementation using shared memory, we have decided to implement variants of the algorithm using GPU caches to maintain memory locality. Our implementation using cache reaches 96.5% and 91.6% of shared memory performance on Fermi and Maxwell, respectively. We have identified several performance pitfalls related to cache blocking in compute-bound codes and suggested optimization techniques to improve the performance.","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the GPU acceleration of dRMSD algorithm, used to compare different structures of a molecule. Comparing to multithreaded CPU implementation, we have reached 13.4× speedup in clustering and 62.7× speedup in I:I dRMSD computation using mid-end GPU. The dRMSD computation exposes strong memory locality and thus is compute-bound. Along with conservative implementation using shared memory, we have decided to implement variants of the algorithm using GPU caches to maintain memory locality. Our implementation using cache reaches 96.5% and 91.6% of shared memory performance on Fermi and Maxwell, respectively. We have identified several performance pitfalls related to cache blocking in compute-bound codes and suggested optimization techniques to improve the performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
dRMSD计算的加速和GPU缓存的有效使用
本文介绍了dRMSD算法的GPU加速,用于比较分子的不同结构。与多线程CPU实现相比,使用中端GPU,我们在集群方面的加速达到13.4倍,在I:I dRMSD计算方面的加速达到62.7倍。dRMSD计算暴露了强内存局部性,因此受计算约束。除了使用共享内存的保守实现外,我们还决定使用GPU缓存来实现算法的变体,以维护内存局部性。我们使用缓存的实现在Fermi和Maxwell上分别达到96.5%和91.6%的共享内存性能。我们已经确定了与计算绑定代码中的缓存阻塞相关的几个性能缺陷,并提出了改进性能的优化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transient performance evaluation of cloud computing applications and dynamic resource control in large-scale distributed systems A security framework for population-scale genomics analysis Deep learning with shallow architecture for image classification A new reality requiers new ecosystems Investigation of DVFS based dynamic reliability management for chip multiprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1