Sunpreet S. Arora, Kai Cao, Anil K. Jain, Gregoire Michaud
{"title":"Crowd powered latent Fingerprint Identification: Fusing AFIS with examiner markups","authors":"Sunpreet S. Arora, Kai Cao, Anil K. Jain, Gregoire Michaud","doi":"10.1109/ICB.2015.7139062","DOIUrl":null,"url":null,"abstract":"Automatic matching of poor quality latent fingerprints to rolled/slap fingerprints using an Automated Fingerprint Identification System (AFIS) is still far from satisfactory. Therefore, it is a common practice to have a latent examiner mark features on a latent for improving the hit rate of the AFIS. We propose a synergistic crowd powered latent identification framework where multiple latent examiners and the AFIS work in conjunction with each other to boost the identification accuracy of the AFIS. Given a latent, the candidate list output by the AFIS is used to determine the likelihood that a hit at rank-1 was found. A latent for which this likelihood is low is crowdsourced to a pool of latent examiners for feature markup. The manual markups are then input to the AFIS to increase the likelihood of making a hit in the reference database. Experimental results show that the fusion of an AFIS with examiner markups improves the rank-1 identification accuracy of the AFIS by 7.75% (using six markups) on the 500 ppi NIST SD27, 11.37% (using two markups) on the 1000 ppi ELFT-EFS public challenge database, and by 2.5% (using a single markup) on the 1000 ppi RS&A database against 250,000 rolled prints in the reference database.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Automatic matching of poor quality latent fingerprints to rolled/slap fingerprints using an Automated Fingerprint Identification System (AFIS) is still far from satisfactory. Therefore, it is a common practice to have a latent examiner mark features on a latent for improving the hit rate of the AFIS. We propose a synergistic crowd powered latent identification framework where multiple latent examiners and the AFIS work in conjunction with each other to boost the identification accuracy of the AFIS. Given a latent, the candidate list output by the AFIS is used to determine the likelihood that a hit at rank-1 was found. A latent for which this likelihood is low is crowdsourced to a pool of latent examiners for feature markup. The manual markups are then input to the AFIS to increase the likelihood of making a hit in the reference database. Experimental results show that the fusion of an AFIS with examiner markups improves the rank-1 identification accuracy of the AFIS by 7.75% (using six markups) on the 500 ppi NIST SD27, 11.37% (using two markups) on the 1000 ppi ELFT-EFS public challenge database, and by 2.5% (using a single markup) on the 1000 ppi RS&A database against 250,000 rolled prints in the reference database.