Crowd powered latent Fingerprint Identification: Fusing AFIS with examiner markups

Sunpreet S. Arora, Kai Cao, Anil K. Jain, Gregoire Michaud
{"title":"Crowd powered latent Fingerprint Identification: Fusing AFIS with examiner markups","authors":"Sunpreet S. Arora, Kai Cao, Anil K. Jain, Gregoire Michaud","doi":"10.1109/ICB.2015.7139062","DOIUrl":null,"url":null,"abstract":"Automatic matching of poor quality latent fingerprints to rolled/slap fingerprints using an Automated Fingerprint Identification System (AFIS) is still far from satisfactory. Therefore, it is a common practice to have a latent examiner mark features on a latent for improving the hit rate of the AFIS. We propose a synergistic crowd powered latent identification framework where multiple latent examiners and the AFIS work in conjunction with each other to boost the identification accuracy of the AFIS. Given a latent, the candidate list output by the AFIS is used to determine the likelihood that a hit at rank-1 was found. A latent for which this likelihood is low is crowdsourced to a pool of latent examiners for feature markup. The manual markups are then input to the AFIS to increase the likelihood of making a hit in the reference database. Experimental results show that the fusion of an AFIS with examiner markups improves the rank-1 identification accuracy of the AFIS by 7.75% (using six markups) on the 500 ppi NIST SD27, 11.37% (using two markups) on the 1000 ppi ELFT-EFS public challenge database, and by 2.5% (using a single markup) on the 1000 ppi RS&A database against 250,000 rolled prints in the reference database.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Automatic matching of poor quality latent fingerprints to rolled/slap fingerprints using an Automated Fingerprint Identification System (AFIS) is still far from satisfactory. Therefore, it is a common practice to have a latent examiner mark features on a latent for improving the hit rate of the AFIS. We propose a synergistic crowd powered latent identification framework where multiple latent examiners and the AFIS work in conjunction with each other to boost the identification accuracy of the AFIS. Given a latent, the candidate list output by the AFIS is used to determine the likelihood that a hit at rank-1 was found. A latent for which this likelihood is low is crowdsourced to a pool of latent examiners for feature markup. The manual markups are then input to the AFIS to increase the likelihood of making a hit in the reference database. Experimental results show that the fusion of an AFIS with examiner markups improves the rank-1 identification accuracy of the AFIS by 7.75% (using six markups) on the 500 ppi NIST SD27, 11.37% (using two markups) on the 1000 ppi ELFT-EFS public challenge database, and by 2.5% (using a single markup) on the 1000 ppi RS&A database against 250,000 rolled prints in the reference database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
群体动力潜在指纹识别:融合AFIS与审查员标记
使用自动指纹识别系统(AFIS)自动匹配质量差的潜在指纹和卷/巴掌指纹仍然远远不能令人满意。因此,为了提高AFIS的命中率,通常的做法是让潜考官在潜上标记特征。我们提出了一个协同的群体驱动的潜在识别框架,其中多个潜在审查员和AFIS相互协作,以提高AFIS的识别准确性。给定一个潜在值,AFIS输出的候选列表用于确定在rank-1找到命中的可能性。可能性较低的潜在对象被众包给一群潜在的特征标记审查员。然后将手动标记输入到AFIS,以增加在参考数据库中命中的可能性。实验结果表明,AFIS与审查员标记的融合在500 ppi的NIST SD27上提高了7.75%(使用6个标记),在1000 ppi的ELFT-EFS公共挑战数据库上提高了11.37%(使用2个标记),在1000 ppi的RS&A数据库上提高了2.5%(使用单个标记),对照参考数据库中的250,000卷印刷品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1