Modeling Distributed Signal Processing Applications

W. Kurschl, Stefan Mitsch, J. Schönböck
{"title":"Modeling Distributed Signal Processing Applications","authors":"W. Kurschl, Stefan Mitsch, J. Schönböck","doi":"10.1109/BSN.2009.20","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks in general and Body Sensor Networks in particular enable sophisticated applications in pervasive healthcare, sports training and other domains,where interconnected nodes work together. Their main goal is to derive context from raw sensor data with feature extraction and classification algorithms. Body sensor networks not only comprise a single sensor type or family but demand different hardware platforms, e.g., sensors to measure acceleration or blood-pressure, or tiny mobile devices to communicate with the user. The problem arises how to efficiently deal with these heterogeneous platforms and programming languages. This paper presents a distributed signal processing framework based on TinyOS and nesC. The framework forms the basis for a Model-Driven Software Development approach. By raising the level of abstraction formal models hide implementation specifics of the framework in a Platform Specific Model. A Platform Independent Model further lifts modeling to functional and non-functional requirements independent from platforms. Thereby we promote cooperation between domain experts and software engineers and facilitate reusability of applications across different platforms.","PeriodicalId":269861,"journal":{"name":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","volume":"319 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2009.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Wireless Sensor Networks in general and Body Sensor Networks in particular enable sophisticated applications in pervasive healthcare, sports training and other domains,where interconnected nodes work together. Their main goal is to derive context from raw sensor data with feature extraction and classification algorithms. Body sensor networks not only comprise a single sensor type or family but demand different hardware platforms, e.g., sensors to measure acceleration or blood-pressure, or tiny mobile devices to communicate with the user. The problem arises how to efficiently deal with these heterogeneous platforms and programming languages. This paper presents a distributed signal processing framework based on TinyOS and nesC. The framework forms the basis for a Model-Driven Software Development approach. By raising the level of abstraction formal models hide implementation specifics of the framework in a Platform Specific Model. A Platform Independent Model further lifts modeling to functional and non-functional requirements independent from platforms. Thereby we promote cooperation between domain experts and software engineers and facilitate reusability of applications across different platforms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式信号处理应用建模
一般来说,无线传感器网络,特别是身体传感器网络,可以在普及的医疗保健、运动训练和其他领域实现复杂的应用,在这些领域,相互连接的节点可以协同工作。他们的主要目标是通过特征提取和分类算法从原始传感器数据中获得上下文。身体传感器网络不仅包括单一类型或系列的传感器,还需要不同的硬件平台,例如,测量加速度或血压的传感器,或与用户通信的微型移动设备。如何有效地处理这些异构平台和编程语言的问题就出现了。本文提出了一个基于TinyOS和nesC的分布式信号处理框架。该框架构成了模型驱动软件开发方法的基础。通过提高抽象级别,正式模型将框架的实现细节隐藏在平台特定模型中。平台独立模型进一步将建模提升到独立于平台的功能和非功能需求。因此,我们促进了领域专家和软件工程师之间的合作,并促进了应用程序跨不同平台的可重用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A h-Shirt-Based Body Sensor Network for Cuffless Calibration and Estimation of Arterial Blood Pressure Key Considerations and Experience Using the Ultra Low Power Sensium Platform in Body Sensor Networks Technologies for an Autonomous Wireless Home Healthcare System Transitional Activity Recognition with Manifold Embedding Wireless Propagation and Coexistence of Medical Body Sensor Networks for Ambulatory Patient Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1