{"title":"Human Activity Recognition Using Convolutional Neural Networks","authors":"Gulustan Dogan, Sinem Sena Ertas, Iremnaz Cay","doi":"10.1109/CIBCB49929.2021.9562906","DOIUrl":null,"url":null,"abstract":"Using smartphone sensors to recognize human activity may be advantageous due to the abundant volume of data that can be obtained. In this paper, we propose a sensor data based deep learning approach for recognizing human activity. Our proposed recognition method uses linear accelerometer (LAcc), gyroscope (Gyr), and magnetometer (Mag) sensors to perceive eight transportation and locomotion activities. The eight activities include: Still, Walk, Run, Bike, Bus, Car, Train, and Subway. In this study, the Sussex-Huawei Locomotion (SHL) Dataset of three participants are used to recognize the physical activities of the users. Fast Fourier Transform (FFT) spectrograms generated from the three axes of the LAcc, Gyr, and Mag sensor data are used as input data for our proposed Convolutional Neural Network (CNN) model. Experimental results on the task of human activity recognition demonstrated the effectiveness of our proposed user-independent approach over that of competitive baselines.","PeriodicalId":163387,"journal":{"name":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB49929.2021.9562906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Using smartphone sensors to recognize human activity may be advantageous due to the abundant volume of data that can be obtained. In this paper, we propose a sensor data based deep learning approach for recognizing human activity. Our proposed recognition method uses linear accelerometer (LAcc), gyroscope (Gyr), and magnetometer (Mag) sensors to perceive eight transportation and locomotion activities. The eight activities include: Still, Walk, Run, Bike, Bus, Car, Train, and Subway. In this study, the Sussex-Huawei Locomotion (SHL) Dataset of three participants are used to recognize the physical activities of the users. Fast Fourier Transform (FFT) spectrograms generated from the three axes of the LAcc, Gyr, and Mag sensor data are used as input data for our proposed Convolutional Neural Network (CNN) model. Experimental results on the task of human activity recognition demonstrated the effectiveness of our proposed user-independent approach over that of competitive baselines.